Chapter 2. MapReduce
MapReduce is a programming model for data processing. The model is simple, yet not too simple to express useful programs in. Hadoop can run MapReduce programs written in various languages; in this chapter, we look at the same program expressed in Java, Ruby, Python, and C++. Most important, MapReduce programs are inherently parallel, thus putting very large-scale data analysis into the hands of anyone with enough machines at her disposal. MapReduce comes into its own for large datasets, so let’s start by looking at one.
A Weather Dataset
For our example, we will write a program that mines weather data. Weather sensors collect data every hour at many locations across the globe and gather a large volume of log data, which is a good candidate for analysis with MapReduce because it is semi-structured and record-oriented.
Data Format
The data we will use is from the National Climatic Data Center (NCDC, http://www.ncdc.noaa.gov/). The data is stored using a line-oriented ASCII format, in which each line is a record. The format supports a rich set of meteorological elements, many of which are optional or with variable data lengths. For simplicity, we focus on the basic elements, such as temperature, which are always present and are of fixed width.
Example 2-1 shows a sample line with some of the salient fields highlighted. The line has been split into multiple lines to show each field; in the real file, fields are packed into one line with no delimiters.
Example 2-1. Format ...
Get Hadoop: The Definitive Guide, 3rd Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.