Wireless Communications Principles and Practice, Second Edition

Book description

The indispensable guide to wireless communications—now fully revised and updated!

Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes:

  • An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond

  • Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more

  • Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation

  • Modulation, equalization, diversity, channel coding, and speech coding

  • New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives

  • New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE

  • Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies

  • Updated glossary of abbreviations and acronyms, and a thorough list of references

  • Dozens of new examples and end-of-chapter problems

Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

Table of contents

  1. Copyright
    1. Dedication
  2. Prentice Hall Communications Engineering and Emerging Technologies Series
  3. Preface
  4. 1. Introduction to Wireless Communication Systems
    1. 1.1. Evolution of Mobile Radio Communications
    2. 1.2. Mobile Radiotelephony in the U.S.
    3. 1.3. Mobile Radio Systems Around the World
    4. 1.4. Examples of Wireless Communication Systems
      1. 1.4.1. Paging Systems
      2. 1.4.2. Cordless Telephone Systems
      3. 1.4.3. Cellular Telephone Systems
        1. 1.4.3.1. How a Cellular Telephone Call is Made
      4. 1.4.4. Comparison of Common Wireless Communication Systems
    5. 1.5. Trends in Cellular Radio and Personal Communications
    6. 1.6. Problems
  5. 2. Modern Wireless Communication Systems
    1. 2.1. Second Generation (2G) Cellular Networks
      1. 2.1.1. Evolution to 2.5G Mobile Radio Networks
      2. 2.1.2. Evolution for 2.5G TDMA Standards
        1. 2.1.2.1. HSCSD for 2.5G GSM
        2. 2.1.2.2. GPRS for 2.5G GSM and IS-136
        3. 2.1.2.3. EDGE for 2.5G GSM and IS-136
      3. 2.1.3. IS-95B for 2.5G CDMA
    2. 2.2. Third Generation (3G) Wireless Networks
      1. 2.2.1. 3G W-CDMA (UMTS)
      2. 2.2.2. 3G cdma2000
      3. 2.2.3. 3G TD-SCDMA
    3. 2.3. Wireless Local Loop (WLL) and LMDS
    4. 2.4. Wireless Local Area Networks (WLANs)
    5. 2.5. Bluetooth and Personal Area Networks (PANs)
    6. 2.6. Summary
    7. 2.7. Problems
  6. 3. The Cellular Concept—System Design Fundamentals
    1. 3.1. Introduction
    2. 3.2. Frequency Reuse
    3. 3.3. Channel Assignment Strategies
    4. 3.4. Handoff Strategies
      1. 3.4.1. Prioritizing Handoffs
      2. 3.4.2. Practical Handoff Considerations
    5. 3.5. Interference and System Capacity
      1. 3.5.1. Co-channel Interference and System Capacity
      2. 3.5.2. Channel Planning for Wireless Systems
      3. 3.5.3. Adjacent Channel Interference
      4. 3.5.4. Power Control for Reducing Interference
    6. 3.6. Trunking and Grade of Service
    7. 3.7. Improving Coverage and Capacity in Cellular Systems
      1. 3.7.1. Cell Splitting
      2. 3.7.2. Sectoring
      3. 3.7.3. Repeaters for Range Extension
      4. 3.7.4. A Microcell Zone Concept
    8. 3.8. Summary
    9. 3.9. Problems
  7. 4. Mobile Radio Propagation: Large-Scale Path Loss
    1. 4.1. Introduction to Radio Wave Propagation
    2. 4.2. Free Space Propagation Model
    3. 4.3. Relating Power to Electric Field
    4. 4.4. The Three Basic Propagation Mechanisms
    5. 4.5. Reflection
      1. 4.5.1. Reflection from Dielectrics
      2. 4.5.2. Brewster Angle
      3. 4.5.3. Reflection from Perfect Conductors
    6. 4.6. Ground Reflection (Two-Ray) Model
    7. 4.7. Diffraction
      1. 4.7.1. Fresnel Zone Geometry
      2. 4.7.2. Knife-edge Diffraction Model
      3. 4.7.3. Multiple Knife-edge Diffraction
    8. 4.8. Scattering
      1. 4.8.1. Radar Cross Section Model
    9. 4.9. Practical Link Budget Design Using Path Loss Models
      1. 4.9.1. Log-distance Path Loss Model
      2. 4.9.2. Log-normal Shadowing
      3. 4.9.3. Determination of Percentage of Coverage Area
    10. 4.10. Outdoor Propagation Models
      1. 4.10.1. Longley–Rice Model
      2. 4.10.2. Durkin’s Model—A Case Study
      3. 4.10.3. Okumura Model
      4. 4.10.4. Hata Model
      5. 4.10.5. PCS Extension to Hata Model
      6. 4.10.6. Walfisch and Bertoni Model
      7. 4.10.7. Wideband PCS Microcell Model
    11. 4.11. Indoor Propagation Models
      1. 4.11.1. Partition Losses (same floor)
      2. 4.11.2. Partition Losses between Floors
      3. 4.11.3. Log-distance Path Loss Model
      4. 4.11.4. Ericsson Multiple Breakpoint Model
      5. 4.11.5. Attenuation Factor Model
    12. 4.12. Signal Penetration into Buildings
    13. 4.13. Ray Tracing and Site Specific Modeling
    14. 4.14. Problems
  8. 5. Mobile Radio Propagation: Small-Scale Fading and Multipath
    1. 5.1. Small-Scale Multipath Propagation
      1. 5.1.1. Factors Influencing Small-Scale Fading
      2. 5.1.2. Doppler Shift
    2. 5.2. Impulse Response Model of a Multipath Channel
      1. 5.2.1. Relationship Between Bandwidth and Received Power
    3. 5.3. Small-Scale Multipath Measurements
      1. 5.3.1. Direct RF Pulse System
      2. 5.3.2. Spread Spectrum Sliding Correlator Channel Sounding
      3. 5.3.3. Frequency Domain Channel Sounding
    4. 5.4. Parameters of Mobile Multipath Channels
      1. 5.4.1. Time Dispersion Parameters
      2. 5.4.2. Coherence Bandwidth
      3. 5.4.3. Doppler Spread and Coherence Time
    5. 5.5. Types of Small-Scale Fading
      1. 5.5.1. Fading Effects Due to Multipath Time Delay Spread
        1. 5.5.1.1. Flat fading
        2. 5.5.1.2. Frequency Selective Fading
      2. 5.5.2. Fading Effects Due to Doppler Spread
        1. 5.5.2.1. Fast Fading
        2. 5.5.2.2. Slow Fading
    6. 5.6. Rayleigh and Ricean Distributions
      1. 5.6.1. Rayleigh Fading Distribution
      2. 5.6.2. Ricean Fading Distribution
    7. 5.7. Statistical Models for Multipath Fading Channels
      1. 5.7.1. Clarke’s Model for Flat Fading
        1. 5.7.1.1. Spectral Shape Due to Doppler Spread in Clarke’s Model
      2. 5.7.2. Simulation of Clarke and Gans Fading Model
      3. 5.7.3. Level Crossing and Fading Statistics
      4. 5.7.4. Two-ray Rayleigh Fading Model
      5. 5.7.5. Saleh and Valenzuela Indoor Statistical Model
      6. 5.7.6. SIRCIM and SMRCIM Indoor and Outdoor Statistical Models
    8. 5.8. Theory of Multipath Shape Factors for Small-Scale Fading Wireless Channels
      1. 5.8.1. Introduction to Shape Factors
        1. 5.8.1.1. Multipath Shape Factors
          1. Angular Spread, Λ
          2. Angular Constriction, γ
          3. Azimuthal Direction of Maximum Fading, θmax
        2. 5.8.1.2. Fading Rate Variance Relationships
          1. Complex Received Voltage,
          2. Received Power, P(r)
          3. Received Envelope, R(r)
        3. 5.8.1.3. Comparison to Omnidirectional Propagation
      2. 5.8.2. Examples of Fading Behavior
        1. 5.8.2.1. Sector Channel Model
        2. 5.8.2.2. Double Sector Channel Model
        3. 5.8.2.3. Ricean Channel Model
      3. 5.8.3. Second-Order Statistics Using Shape Factors [Dur00]
        1. 5.8.3.1. Level-Crossing Rates and Average Fade Duration
        2. 5.8.3.2. Spatial Autocovariance
        3. 5.8.3.3. Coherence Distance
      4. 5.8.4. Applying Shape Factors to Wideband Channels
      5. 5.8.5. Revisiting Classical Channel Models with Shape Factors
    9. 5.9. Summary
    10. 5.10. Problems
  9. 6. Modulation Techniques for Mobile Radio
    1. 6.1. Frequency Modulation vs. Amplitude Modulation
    2. 6.2. Amplitude Modulation
      1. 6.2.1. Single Sideband AM
      2. 6.2.2. Pilot Tone SSB
      3. 6.2.3. Demodulation of AM signals
    3. 6.3. Angle Modulation
      1. 6.3.1. Spectra and Bandwidth of FM Signals
      2. 6.3.2. FM Modulation Methods
        1. Direct Method
        2. Indirect Method
      3. 6.3.3. FM Detection Techniques
        1. Slope Detector
        2. Zero-Crossing Detector
        3. PLL for FM Detection
        4. Quadrature Detection
      4. 6.3.4. Tradeoff Between SNR and Bandwidth in an FM Signal
    4. 6.4. Digital Modulation—an Overview
      1. 6.4.1. Factors That Influence the Choice of Digital Modulation
      2. 6.4.2. Bandwidth and Power Spectral Density of Digital Signals
    5. 6.5. Line Coding
    6. 6.6. Pulse Shaping Techniques
      1. 6.6.1. Nyquist Criterion for ISI Cancellation
      2. 6.6.2. Raised Cosine Rolloff Filter
      3. 6.6.3. Gaussian Pulse-Shaping Filter
    7. 6.7. Geometric Representation of Modulation Signals
    8. 6.8. Linear Modulation Techniques
      1. 6.8.1. Binary Phase Shift Keying (BPSK)
        1. Spectrum and Bandwidth of BPSK
        2. BPSK Receiver
      2. 6.8.2. Differential Phase Shift Keying (DPSK)
      3. 6.8.3. Quadrature Phase Shift Keying (QPSK)
        1. Spectrum and Bandwidth of QPSK Signals
      4. 6.8.4. QPSK Transmission and Detection Techniques
      5. 6.8.5. Offset QPSK
      6. 6.8.6. π/4 QPSK
      7. 6.8.7. π/4 QPSK Transmission Techniques
      8. 6.8.8. π/4 QPSK Detection Techniques
        1. Baseband Differential Detection
        2. IF Differential Detector
        3. FM Discriminator
    9. 6.9. Constant Envelope Modulation
      1. 6.9.1. Binary Frequency Shift Keying
        1. Spectrum and Bandwidth of BFSK signals
        2. Coherent Detection of Binary FSK
        3. Noncoherent Detection of Binary FSK
      2. 6.9.2. Minimum Shift Keying (MSK)
        1. MSK Power Spectrum
        2. MSK Transmitter and Receiver
      3. 6.9.3. Gaussian Minimum Shift Keying (GMSK)
        1. GMSK Bit Error Rate
        2. GMSK Transmitter and Receiver
    10. 6.10. Combined Linear and Constant Envelope Modulation Techniques
      1. 6.10.1. M-ary Phase Shift Keying (MPSK)
        1. Power Spectra of M-ary PSK
      2. 6.10.2. M-ary Quadrature Amplitude Modulation (QAM)
      3. 6.10.3. M-ary Frequency Shift Keying (MFSK) and OFDM
    11. 6.11. Spread Spectrum Modulation Techniques
      1. 6.11.1. Pseudo-Noise (PN) Sequences
      2. 6.11.2. Direct Sequence Spread Spectrum (DS–SS)
      3. 6.11.3. Frequency Hopped Spread Spectrum (FH–SS)
      4. 6.11.4. Performance of Direct Sequence Spread Spectrum
      5. 6.11.5. Performance of Frequency Hopping Spread Spectrum
    12. 6.12. Modulation Performance in Fading and Multipath Channels
      1. 6.12.1. Performance of Digital Modulation in Slow Flat-Fading Channels
      2. 6.12.2. Digital Modulation in Frequency Selective Mobile Channels
      3. 6.12.3. Performance of π/4 DQPSK in Fading and Interference
    13. 6.13. Problems
  10. 7. Equalization, Diversity, and Channel Coding
    1. 7.1. Introduction
    2. 7.2. Fundamentals of Equalization
    3. 7.3. Training A Generic Adaptive Equalizer
    4. 7.4. Equalizers in a Communications Receiver
    5. 7.5. Survey of Equalization Techniques
    6. 7.6. Linear Equalizers
    7. 7.7. Nonlinear Equalization
      1. 7.7.1. Decision Feedback Equalization (DFE)
      2. 7.7.2. Maximum Likelihood Sequence Estimation (MLSE) Equalizer
    8. 7.8. Algorithms for Adaptive Equalization
      1. 7.8.1. Zero Forcing Algorithm
      2. 7.8.2. Least Mean Square Algorithm
      3. 7.8.3. Recursive Least Squares Algorithm
      4. 7.8.4. Summary of Algorithms
    9. 7.9. Fractionally Spaced Equalizers
    10. 7.10. Diversity Techniques
      1. 7.10.1. Derivation of Selection Diversity Improvement
      2. 7.10.2. Derivation of Maximal Ratio Combining Improvement
      3. 7.10.3. Practical Space Diversity Considerations
        1. 7.10.3.1. Selection Diversity
        2. 7.10.3.2. Feedback or Scanning Diversity
        3. 7.10.3.3. Maximal Ratio Combining
        4. 7.10.3.4. Equal Gain Combining
      4. 7.10.4. Polarization Diversity
        1. Theoretical Model for Polarization Diversity
      5. 7.10.5. Frequency Diversity
      6. 7.10.6. Time Diversity
    11. 7.11. RAKE Receiver
    12. 7.12. Interleaving
    13. 7.13. Fundamentals of Channel Coding
    14. 7.14. Block Codes and Finite Fields
      1. Properties of Block Codes
      2. 7.14.1. Examples of Block Codes
        1. Hamming Codes
        2. Hadamard Codes
        3. Golay Codes
        4. Cyclic Codes
        5. BCH Codes
        6. Reed–Solomon Codes
      3. 7.14.2. Case Study: Reed–Solomon Codes for CDPD
        1. 7.14.2.1. Reed–Solomon Encoding
        2. 7.14.2.2. Reed–Solomon Decoding
        3. Syndrome Calculation
        4. Error Locator Polynomial Calculation
    15. 7.15. Convolutional Codes
      1. 7.15.1. Decoding of Convolutional Codes
        1. 7.15.1.1. The Viterbi Algorithm
        2. 7.15.1.2. Other Decoding Algorithms for Convolutional Codes
          1. Fano’s Sequential Decoding
          2. The Stack Algorithm
          3. Feedback Decoding
    16. 7.16. Coding Gain
    17. 7.17. Trellis Coded Modulation
    18. 7.18. Turbo Codes
    19. 7.19. Problems
  11. 8. Speech Coding
    1. 8.1. Introduction
    2. 8.2. Characteristics of Speech Signals
    3. 8.3. Quantization Techniques
      1. 8.3.1. Uniform Quantization
      2. 8.3.2. Nonuniform Quantization
      3. 8.3.3. Adaptive Quantization
      4. 8.3.4. Vector Quantization
    4. 8.4. Adaptive Differential Pulse Code Modulation (ADPCM)
    5. 8.5. Frequency Domain Coding of Speech
      1. 8.5.1. Sub-band Coding
      2. 8.5.2. Adaptive Transform Coding
    6. 8.6. Vocoders
      1. 8.6.1. Channel Vocoders
      2. 8.6.2. Formant Vocoders
      3. 8.6.3. Cepstrum Vocoders
      4. 8.6.4. Voice-Excited Vocoder
    7. 8.7. Linear Predictive Coders
      1. 8.7.1. LPC Vocoders
      2. 8.7.2. Multipulse Excited LPC
      3. 8.7.3. Code-Excited LPC
      4. 8.7.4. Residual Excited LPC
    8. 8.8. Choosing Speech Codecs for Mobile Communications
    9. 8.9. The GSM Codec
    10. 8.10. The USDC Codec
    11. 8.11. Performance Evaluation of Speech Coders
    12. 8.12. Problems
  12. 9. Multiple Access Techniques for Wireless Communications
    1. 9.1. Introduction
      1. 9.1.1. Introduction to Multiple Access
    2. 9.2. Frequency Division Multiple Access (FDMA)
    3. 9.3. Time Division Multiple Access (TDMA)
    4. 9.4. Spread Spectrum Multiple Access
      1. 9.4.1. Frequency Hopped Multiple Access (FHMA)
      2. 9.4.2. Code Division Multiple Access (CDMA)
      3. 9.4.3. Hybrid Spread Spectrum Techniques
    5. 9.5. Space Division Multiple Access (SDMA)
    6. 9.6. Packet Radio
      1. 9.6.1. Packet Radio Protocols
        1. 9.6.1.1. Pure ALOHA
        2. 9.6.1.2. Slotted ALOHA
      2. 9.6.2. Carrier Sense Multiple Access (CSMA) Protocols
      3. 9.6.3. Reservation Protocols
        1. 9.6.3.1. Reservation ALOHA
        2. 9.6.3.2. Packet Reservation Multiple Access (PRMA)
      4. 9.6.4. Capture Effect in Packet Radio
    7. 9.7. Capacity of Cellular Systems
      1. 9.7.1. Capacity of Cellular CDMA
      2. 9.7.2. Capacity of CDMA with Multiple Cells
        1. Weighting Factors
        2. Using Concentric Circle Geometry to Find CDMA Capacity
      3. 9.7.3. Capacity of Space Division Multiple Access
    8. 9.8. Problems
  13. 10. Wireless Networking
    1. 10.1. Introduction to Wireless Networks
    2. 10.2. Differences Between Wireless and Fixed Telephone Networks
      1. 10.2.1. The Public Switched Telephone Network (PSTN)
      2. 10.2.2. Limitations in Wireless Networking
      3. 10.2.3. Merging Wireless Networks and the PSTN
    3. 10.3. Development of Wireless Networks
      1. 10.3.1. First Generation Wireless Networks
      2. 10.3.2. Second Generation Wireless Networks
      3. 10.3.3. Third Generation Wireless Networks
    4. 10.4. Fixed Network Transmission Hierarchy
    5. 10.5. Traffic Routing in Wireless Networks
      1. 10.5.1. Circuit Switching
      2. 10.5.2. Packet Switching
      3. 10.5.3. The X.25 Protocol
    6. 10.6. Wireless Data Services
      1. 10.6.1. Cellular Digital Packet Data (CDPD)
      2. 10.6.2. Advanced Radio Data Information Systems (ARDIS)
      3. 10.6.3. RAM Mobile Data (RMD)
    7. 10.7. Common Channel Signaling (CCS)
      1. 10.7.1. The Distributed Central Switching Office for CCS
    8. 10.8. Integrated Services Digital Network (ISDN)
      1. 10.8.1. Broadband ISDN and ATM
    9. 10.9. Signaling System No. 7 (SS7)
      1. 10.9.1. Network Services Part (NSP) of SS7
        1. 10.9.1.1. Message Transfer Part (MTP) of SS7
        2. 10.9.1.2. Signaling Connection Control Part (SCCP) of SS7
      2. 10.9.2. The SS7 User Part
        1. 10.9.2.1. Integrated Services Digital Network User Part (ISUP)
        2. 10.9.2.2. Transaction Capabilities Application Part (TCAP)
        3. 10.9.2.3. Operation Maintenance and Administration Part (OMAP)
      3. 10.9.3. Signaling Traffic in SS7
      4. 10.9.4. SS7 Services
      5. 10.9.5. Performance of SS7
    10. 10.10. An Example of SS7 — Global Cellular Network Interoperability
      1. Registration
      2. Call Delivery
      3. Intersystem Handoffs
    11. 10.11. Personal Communication Services/Networks (PCS/PCNs)
      1. 10.11.1. Packet vs. Circuit Switching for PCN
      2. 10.11.2. Cellular Packet-Switched Architecture
        1. The Trunk Interface Unit (TIU)
        2. The Wireless Terminal Interface Unit (WIU)
        3. Base Station Interface Unit (BIU)
        4. Cellular Controller Interface Unit (CIU)
        5. 10.11.2.1. Network Functionality in Cellular Packet-Switched Architecture
    12. 10.12. Protocols for Network Access
      1. 10.12.1. Packet Reservation Multiple Access (PRMA)
    13. 10.13. Network Databases
      1. 10.13.1. Distributed Database for Mobility Management
    14. 10.14. Universal Mobile Telecommunication System (UMTS)
    15. 10.15. Summary
  14. 11. Wireless Systems and Standards
    1. 11.1. AMPS and ETACS
      1. 11.1.1. AMPS and ETACS System Overview
      2. 11.1.2. Call Handling in AMPS and ETACS
      3. 11.1.3. AMPS and ETACS Air Interface
        1. Voice Modulation and Demodulation
        2. Supervisory Signals (SAT and ST tones)
        3. Wideband Blank-and-Burst Encoding
      4. 11.1.4. N-AMPS
    2. 11.2. United States Digital Cellular (IS-54 and IS-136)
      1. 11.2.1. USDC Radio Interface
      2. 11.2.2. United States Digital Cellular Derivatives (IS-94 and IS-136)
    3. 11.3. Global System for Mobile (GSM)
      1. 11.3.1. GSM Services and Features
      2. 11.3.2. GSM System Architecture
      3. 11.3.3. GSM Radio Subsystem
      4. 11.3.4. GSM Channel Types
        1. 11.3.4.1. GSM Traffic Channels (TCHs)
          1. Full-Rate TCH
          2. Half-Rate TCH
        2. 11.3.4.2. GSM Control Channels (CCH)
      5. 11.3.5. Example of a GSM Call
      6. 11.3.6. Frame Structure for GSM
      7. 11.3.7. Signal Processing in GSM
    4. 11.4. CDMA Digital Cellular Standard (IS-95)
      1. 11.4.1. Frequency and Channel Specifications
      2. 11.4.2. Forward CDMA Channel
        1. 11.4.2.1. Convolutional Encoder and Repetition Circuit
        2. 11.4.2.2. Block Interleaver
        3. 11.4.2.3. Long PN Sequence
        4. 11.4.2.4. Data Scrambler
        5. 11.4.2.5. Power Control Subchannel
        6. 11.4.2.6. Orthogonal Covering
        7. 11.4.2.7. Quadrature Modulation
      3. 11.4.3. Reverse CDMA Channel
        1. 11.4.3.1. Convolutional Encoder and Symbol Repetition
        2. 11.4.3.2. Block Interleaver
        3. 11.4.3.3. Orthogonal Modulation
        4. 11.4.3.4. Variable Data Rate Transmission
        5. 11.4.3.5. Direct Sequence Spreading
        6. 11.4.3.6. Quadrature Modulation
      4. 11.4.4. IS-95 with 14.4 kbps Speech Coder [ANS95]
    5. 11.5. CT2 Standard for Cordless Telephones
      1. 11.5.1. CT2 Services and Features
      2. 11.5.2. The CT2 Standard
    6. 11.6. Digital European Cordless Telephone (DECT)
      1. 11.6.1. Features and Characteristics
      2. 11.6.2. DECT Architecture
      3. 11.6.3. DECT Functional Concept
      4. 11.6.4. DECT Radio Link
    7. 11.7. PACS — Personal Access Communication Systems
      1. 11.7.1. PACS System Architecture
      2. 11.7.2. PACS Radio Interface
    8. 11.8. Pacific Digital Cellular (PDC)
    9. 11.9. Personal Handyphone System (PHS)
    10. 11.10. US PCS and ISM Bands
    11. 11.11. US Wireless Cable Television
    12. 11.12. Summary of Standards Throughout the World
    13. 11.13. Problems
  15. A. Trunking Theory
    1. A.1. Erlang B
      1. A.1.1. Derivation of Erlang B
    2. A.2. Erlang C
      1. A.2.1. Derivation of Erlang C
  16. B. Noise Figure Calculations for Link Budgets
  17. C. Rate Variance Relationships for Shape Factor Theory
    1. C.1. Rate Variance for Complex Voltage
    2. C.2. Rate Variance for Power
    3. C.3. Rate Variance for Envelope
  18. D. Approximate Spatial Autocovariance Function for Shape Factor Theory
  19. E. Gaussian Approximations for Spread Spectrum CDMA
    1. E.1. The Gaussian Approximation
    2. E.2. The Improved Gaussian Approximation (IGA)
    3. E.3. A Simplified Expression for the Improved Gaussian Approximation (SEIGA) [Lib95]
  20. F. Q, erf & erfc Functions
    1. F.1. The Q-Function
    2. F.2. The erf and erfc Functions
  21. G. Mathematical Tables, Functions, and Transforms
  22. H. Abbreviations and Acronyms
    1. Numerics
    2. A
    3. B
    4. C
    5. D
    6. E
    7. F
    8. G
    9. H
    10. I
    11. J
    12. L
    13. M
    14. N
    15. O
    16. P
    17. Q
    18. R
    19. S
    20. T
    21. U
    22. V
    23. W
    24. Z
  23. I. References

Product information

  • Title: Wireless Communications Principles and Practice, Second Edition
  • Author(s): Theodore S. Rappaport
  • Release date: December 2001
  • Publisher(s): Pearson
  • ISBN: 0130422320