Book description
Conquer data hurdles, supercharge your ML journey, and become a leader in your field with synthetic data generation techniques, best practices, and case studies
Key Features
- Avoid common data issues by identifying and solving them using synthetic data-based solutions
- Master synthetic data generation approaches to prepare for the future of machine learning
- Enhance performance, reduce budget, and stand out from competitors using synthetic data
- Purchase of the print or Kindle book includes a free PDF eBook
Book Description
The machine learning (ML) revolution has made our world unimaginable without its products and services. However, training ML models requires vast datasets, which entails a process plagued by high costs, errors, and privacy concerns associated with collecting and annotating real data. Synthetic data emerges as a promising solution to all these challenges.
This book is designed to bridge theory and practice of using synthetic data, offering invaluable support for your ML journey. Synthetic Data for Machine Learning empowers you to tackle real data issues, enhance your ML models' performance, and gain a deep understanding of synthetic data generation. You’ll explore the strengths and weaknesses of various approaches, gaining practical knowledge with hands-on examples of modern methods, including Generative Adversarial Networks (GANs) and diffusion models. Additionally, you’ll uncover the secrets and best practices to harness the full potential of synthetic data.
By the end of this book, you’ll have mastered synthetic data and positioned yourself as a market leader, ready for more advanced, cost-effective, and higher-quality data sources, setting you ahead of your peers in the next generation of ML.
What you will learn
- Understand real data problems, limitations, drawbacks, and pitfalls
- Harness the potential of synthetic data for data-hungry ML models
- Discover state-of-the-art synthetic data generation approaches and solutions
- Uncover synthetic data potential by working on diverse case studies
- Understand synthetic data challenges and emerging research topics
- Apply synthetic data to your ML projects successfully
Who this book is for
If you are a machine learning (ML) practitioner or researcher who wants to overcome data problems, this book is for you. Basic knowledge of ML and Python programming is required. The book is one of the pioneer works on the subject, providing leading-edge support for ML engineers, researchers, companies, and decision makers.
Table of contents
- Synthetic Data for Machine Learning
- Contributors
- About the author
- About the reviewers
- Preface
- Part 1:Real Data Issues, Limitations, and Challenges
- Chapter 1: Machine Learning and the Need for Data
- Chapter 2: Annotating Real Data
- Chapter 3: Privacy Issues in Real Data
- Part 2:An Overview of Synthetic Data for Machine Learning
- Chapter 4: An Introduction to Synthetic Data
- Chapter 5: Synthetic Data as a Solution
- Part 3:Synthetic Data Generation Approaches
- Chapter 6: Leveraging Simulators and Rendering Engines to Generate Synthetic Data
- Chapter 7: Exploring Generative Adversarial Networks
- Chapter 8: Video Games as a Source of Synthetic Data
- Chapter 9: Exploring Diffusion Models for Synthetic Data
- Part 4:Case Studies and Best Practices
- Chapter 10: Case Study 1 – Computer Vision
- Chapter 11: Case Study 2 – Natural Language Processing
- Chapter 12: Case Study 3 – Predictive Analytics
- Chapter 13: Best Practices for Applying Synthetic Data
- Part 5:Current Challenges and Future Perspectives
- Chapter 14: Synthetic-to-Real Domain Adaptation
- Chapter 15: Diversity Issues in Synthetic Data
- Chapter 16: Photorealism in Computer Vision
- Chapter 17: Conclusion
- Index
- Other Books You May Enjoy
Product information
- Title: Synthetic Data for Machine Learning
- Author(s):
- Release date: October 2023
- Publisher(s): Packt Publishing
- ISBN: 9781803245409
You might also like
book
Training Data for Machine Learning
Your training data has as much to do with the success of your data project as …
book
Synthetic Data for Deep Learning: Generate Synthetic Data for Decision Making and Applications with Python and R
Data is the indispensable fuel that drives the decision making of everything from governments, to major …
book
Synthetic Data and Generative AI
Synthetic Data and Generative AI covers the foundations of machine learning, with modern approaches to solving …
book
Practical Simulations for Machine Learning
Simulation and synthesis are core parts of the future of AI and machine learning. Consider: programmers, …