Chapter 6. Learning Best Practices for Model Evaluation and Hyperparameter Tuning

In the previous chapters, you learned about the essential machine learning algorithms for classification and how to get our data into shape before we feed it into those algorithms. Now, it's time to learn about the best practices of building good machine learning models by fine-tuning the algorithms and evaluating the model's performance! In this chapter, we will learn how to:

  • Obtain unbiased estimates of a model's performance
  • Diagnose the common problems of machine learning algorithms
  • Fine-tune machine learning models
  • Evaluate predictive models using different performance metrics

Streamlining workflows with pipelines

When we applied different preprocessing techniques ...

Get Python: Real-World Data Science now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.