Book description
NONPARAMETRIC STATISTICS WITH APPLICATIONS TO SCIENCE AND ENGINEERING WITH RIntroduction to the methods and techniques of traditional and modern nonparametric statistics, incorporating R code
Nonparametric Statistics with Applications to Science and Engineering with R presents modern nonparametric statistics from a practical point of view, with the newly revised edition including custom R functions implementing nonparametric methods to explain how to compute them and make them more comprehensible.
Relevant built-in functions and packages on CRAN are also provided with a sample code. R codes in the new edition not only enable readers to perform nonparametric analysis easily, but also to visualize and explore data using R’s powerful graphic systems, such as ggplot2 package and R base graphic system.
The new edition includes useful tables at the end of each chapter that help the reader find data sets, files, functions, and packages that are used and relevant to the respective chapter. New examples and exercises that enable readers to gain a deeper insight into nonparametric statistics and increase their comprehension are also included.
Some of the sample topics discussed in Nonparametric Statistics with Applications to Science and Engineering with R include:
- Basics of probability, statistics, Bayesian statistics, order statistics, Kolmogorov–Smirnov test statistics, rank tests, and designed experiments
- Categorical data, estimating distribution functions, density estimation, least squares regression, curve fitting techniques, wavelets, and bootstrap sampling
- EM algorithms, statistical learning, nonparametric Bayes, WinBUGS, properties of ranks, and Spearman coefficient of rank correlation
- Chi-square and goodness-of-fit, contingency tables, Fisher exact test, MC Nemar test, Cochran’s test, Mantel–Haenszel test, and Empirical Likelihood
Nonparametric Statistics with Applications to Science and Engineering with R is a highly valuable resource for graduate students in engineering and the physical and mathematical sciences, as well as researchers who need a more comprehensive, but succinct understanding of modern nonparametric statistical methods.
Table of contents
- Cover
- Title Page
- Copyright
- Preface
- Acknowledgments
- 1 Introduction
-
2 Probability Basics
- 2.1 Helpful Functions
- 2.2 Events, Probabilities, and Random Variables
- 2.3 Numerical Characteristics of Random Variables
- 2.4 Discrete Distributions
- 2.5 Continuous Distributions
- 2.6 Mixture Distributions
- 2.7 Exponential Family of Distributions
- 2.8 Stochastic Inequalities
- 2.9 Convergence of Random Variables
- 2.10 Exercises
- References
- Notes
- 3 Statistics Basics
- 4 Bayesian Statistics
- 5 Order Statistics
- 6 Goodness of Fit
- 7 Rank Tests
- 8 Designed Experiments
- 9 Categorical Data
- 10 Estimating Distribution Functions
- 11 Density Estimation
- 12 Beyond Linear Regression
- 13 Curve Fitting Techniques
- 14 Wavelets
- 15 Bootstrap
- 16 EM Algorithm
- 17 Statistical Learning
- 18 Nonparametric Bayes
- Appendix A: WinBUGS
- Appendix B: R Coding
- R Index
- Author Index
- Subject Index
- End User License Agreement
Product information
- Title: Nonparametric Statistics with Applications to Science and Engineering with R, 2nd Edition
- Author(s):
- Release date: October 2022
- Publisher(s): Wiley
- ISBN: 9781119268130
You might also like
book
Nonparametric Statistical Methods Using R
This book covers traditional nonparametric methods and rank-based analyses, including estimation and inference for models ranging …
book
A Course in Statistics with R
Integrates the theory and applications of statistics using R A Course in Statistics with R has …
book
Nonparametric Hypothesis Testing: Rank and Permutation Methods with Applications in R
A novel presentation of rank and permutation tests, with accessible guidance to applications in R Nonparametric …
book
Discrete Wavelet Transformations, 2nd Edition
Updated and Expanded Textbook Offers Accessible and Applications-First Introduction to Wavelet Theory for Students and Professionals …