Chapter 3. Word2vec – Learning Word Embeddings
In this chapter, we will discuss a topic of paramount importance in NLP—Word2vec, a technique to learn word embeddings or distributed numerical feature representations (that is, vectors) of words. Learning word representations lies at the very foundation of many NLP tasks because many NLP tasks rely on good feature representations for words that preserve their semantics as well as their context in a language. For example, the feature representation of the word forest should be very different from oven as these words are rarely used in similar contexts, whereas the representations of forest and jungle should be very similar.
Note
Word2vec is called a distributed representation, as the semantics of the ...
Get Natural Language Processing with TensorFlow now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.