Book description
Nanosensors: Physical, Chemical, and Biological, Second Edition offers a panoramic view of the field and related nanotechnologies with extraordinary clarity and depth.
Table of contents
- Cover
- Half-Title
- Series
- Title
- Copyright
- Dedication
- Contents
- Preface to the Second Edition
- Preface to the First Edition
- Acknowledgments
- Author’s Profile
- About the Book (2nd Edition)
- Abbreviations and Acronyms
- Mathematical Notation
-
Part I Fundamental Concepts of Nanosensors
-
1. Introduction to Nanosensors
- 1.1 Getting Started with Nanosensors
- 1.2 Natural Sciences
- 1.3 Physics
-
1.4 Chemistry
- 1.4.1 Definition of Chemistry
- 1.4.2 Elements and Compounds
- 1.4.3 Organic and Inorganic Compounds
- 1.4.4 Subdivisions of Chemistry
- 1.4.5 Natural and Artificial Elements
- 1.4.6 Metals, Nonmetals, and Metalloids
- 1.4.7 Periodic Table of Elements
- 1.4.8 Chemical Change and Reaction
- 1.4.9 Electronic Configuration (Structure) of Elements
- 1.4.10 Chemical Bond
- 1.4.11 Oxidation and Reduction
- 1.4.12 Acid, Base, and Salt
- 1.4.13 Expressing Concentrations of Solutions and Gases
- 1.4.14 Hydrocarbons: Saturated and Unsaturated
- 1.4.15 Alkyl and Aryl Groups
- 1.4.16 Alcohols and Phenols
- 1.4.17 Carboxylic Acids
- 1.4.18 Aldehydes and Ketones
- 1.4.19 Amines and Amino Acids
- 1.4.20 Lipids
- 1.4.21 Carbohydrates
- 1.4.22 Proteins and Enzymes
- 1.5 Biology
- 1.6 Semiconductor Electronics
- 1.7 Nanometer and Appreciation of Its Magnitude
- 1.8 Nanoscience and Nanotechnology
- 1.9 Nanomaterials and the Unusual Behavior at Nanoscales
- 1.10 Moving toward Sensors and Transducers: Meaning of Terms “Sensors” and “Transducers”
- 1.11 Definition of Sensor Parameters and Characteristics
- 1.12 Evolution of Semiconductor-Based Microsensors
-
1.13 From the Macrosensor to the Microsensor Age and the Necessity for Nanoscale Measurements
- 1.13.1 A Miniaturized Sensor Can Accomplish Many Tasks That a Bulky Device Cannot Perform
- 1.13.2 The Issue of Power Consumption
- 1.13.3 Low Response Times
- 1.13.4 Multi-Analyte Detection and Multifunctionality
- 1.13.5 Sensitivity Considerations and Need for Functionalization
- 1.13.6 Interfacing with Biomolecules
- 1.13.7 Low Costs
- 1.13.8 Possibility of a New Genre of Devices
- 1.14 Definition and Classification of Nanosensors
- 1.15 Physical, Chemical, and Biological Nanosensors
- 1.16 Some Examples of Nanosensors
- 1.17 Getting Familiar with Analytical and Characterization Tools: Microscopic Techniques to View Nanomaterials and Nanosensors
-
1.18 Spectroscopic Techniques for Analyzing Chemical Composition of Nanomaterials and Nanosensors
- 1.18.1 Infrared Spectroscopy
- 1.18.2 Ultraviolet-Visible Spectroscopy
- 1.18.3 Raman Spectroscopy
- 1.18.4 Energy-Dispersive X-Ray Spectroscopy (EDX)
- 1.18.5 Auger Electron Spectroscopy
- 1.18.6 X-Ray Diffraction
- 1.18.7 X-Ray Photoelectron Spectroscopy or Electron Spectroscopy for Chemical Analysis
- 1.18.8 Secondary Ion Mass Spectrometry
- 1.19 The Displacement Nanosensor: STM
-
1.20 The Force Nanosensor: AFM
- 1.20.1 Operating Principle
- 1.20.2 Lennard-Jones Potential and the Van der Waals Forces
- 1.20.3 Other Forces and Potentials
- 1.20.4 Force Sensor (Cantilever) and Force Measurement
- 1.20.5 Static and Dynamic Atomic Force Microscopy
- 1.20.6 Classification of Modes of Operation of AFM on the Basis of Contact
- 1.20.7 Frequency-Modulation Atomic Force Microscopy
- 1.20.8 Generic Calculation
- 1.21 Outline and Organization of the Book
- 1.22 Discussion and Conclusions
- Review Exercises
- References
-
1. Introduction to Nanosensors
-
Part II Nanomaterials and Micro/Nanofabrication Facilities
-
2. Materials for Nanosensors
- 2.1 Introduction
- 2.2 Nanoparticles or Nanoscale Particles, the Importance of the Intermediate Regime between Atoms and Molecules, and Bulk Matter
- 2.3 Classification of Nanoparticles on the Basis of Their Composition and Occurrence
- 2.4 Core-/Shell-Structured Nanoparticles
- 2.5 Shape Dependence of Properties at the Nanoscale
- 2.6 Dependence of Properties of Nanoparticles on Particle Size
- 2.7 Surface Energy of a Solid
- 2.8 Metallic Nanoparticles and Plasmons
- 2.9 Optical Properties of Bulk Metals and Metallic Nanoparticles
- 2.10 Parameters Controlling the Position of Surface Plasmon Band of Nanoparticles
- 2.11 Quantum Confinement
-
2.12 Quantum Dots
- 2.12.1 Fundamentals
- 2.12.2 Tight-Binding Approach to Optical Bandgap (Exciton Energy) Versus Quantum Dot Size
- 2.12.3 Comparison of Quantum Dots With Organic Fluorophores
- 2.12.4 Types of Quantum Dots Depending on Composition
- 2.12.5 Classification of Quantum Dots Based on Structure
- 2.12.6 Capping Molecules or Ligands on the Surfaces of Quantum Dots
- 2.13 Carbon Nanotubes
- 2.14 Inorganic Nanowires
- 2.15 Nanoporous Materials
- 2.16 Discussion and Conclusions
- Review Exercises
- References
-
3. Nanosensor Laboratory
- 3.1 Introduction
- 3.2 Nanotechnology Division
-
3.3 Micro- and Nanoelectronics Division
- 3.3.1 Semiconductor Clean Room
- 3.3.2 Silicon Single-Crystal Growth and Wafer Production
- 3.3.3 Molecular Beam Epitaxy
- 3.3.4 Mask Making
- 3.3.5 Thermal Oxidation
- 3.3.6 Diffusion of Impurities in a Semiconductor
- 3.3.7 Ion Implantation
- 3.3.8 Photolithography
- 3.3.9 Chemical Vapor Deposition
- 3.3.10 Wet Chemical Etching and Common Etchants
- 3.3.11 Reactive Ion Etching
- 3.3.12 Focused Ion Beam Etching and Deposition
- 3.3.13 Metallization
- 3.3.14 Dicing, Wire Bonding, and Encapsulation
- 3.3.15 IC Downscaling: Special Technologies and Processes
-
3.4 MEMS and NEMS Division
- 3.4.1 Surface and Bulk Micromachining
- 3.4.2 Machining by Wet and Dry Etching Techniques
- 3.4.3 Deep Reactive-Ion Etching
- 3.4.4 Front- and Back-Side Mask Alignment
- 3.4.5 Multiple Wafer Bonding and Glass-Silicon Bonding
- 3.4.6 Wafer Lapping
- 3.4.7 Chemical Mechanical Polishing
- 3.4.8 Electroplating
- 3.4.9 LIGA Process
- 3.4.10 Micro-Injection Molding
- 3.4.11 Hot Embossing and Electroforming
- 3.4.12 Combination of MEMS/NEMS and CMOS Processes
-
3.5 Biochemistry Division
- 3.5.1 Surface Functionalization and Biofunctionalization of Nanomaterials
- 3.5.2 Immobilization of Biological Elements
- 3.5.3 Protocols for Attachment of Antibodies on Sensors
- 3.5.4 Functionalization of CNTs for Biological Applications
- 3.5.5 Water Solubility of Quantum Dots
- 3.5.6 Low Cytotoxicity Coatings
- 3.6 Chemistry Division
- 3.7 Nanosensor Characterization Division
- 3.8 Nanosensor Powering, Signal Processing, and Communication Division
- 3.9 Discussion and Conclusions
- Review Exercises
- References
-
2. Materials for Nanosensors
-
Part III Physical Nanosensors
-
4. Mechanical Nanosensors
- 4.1 Introduction
- 4.2 Nanogram Mass Sensing by Quartz Crystal Microbalance
- 4.3 Attogram (10−18g) and Zeptogram (10−21g) Mass Sensing by MEMS/NEMS Resonators
- 4.4 Electron Tunneling Displacement Nanosensor
- 4.5 Coulomb Blockade Electrometer-Based Nanosensor
- 4.6 Nanometer-Scale Displacement Sensing by Single-Electron Transistor
- 4.7 Magnetomotive Displacement Nanosensor
- 4.8 Piezoresistive and Piezoelectric Displacement Nanosensors
- 4.9 Optical Displacement Nanosensor
- 4.10 Femtonewton Force Sensors Using Doubly Clamped Suspended Carbon Nanotube Resonators
- 4.11 Suspended CNT Electromechanical Sensors for Displacement and Force
- 4.12 Membrane-Based CNT Electromechanical Pressure Sensor
- 4.13 Tunnel Effect Accelerometer
- 4.14 NEMS Accelerometer
- 4.15 Silicon Nanowire Accelerometer
- 4.16 CNT Flow Sensor for Ionic Solutions
- 4.17 Discussion and Conclusions
- Review Exercises
- References
-
5. Thermal Nanosensors
- 5.1 Introduction
- 5.2 Nanoscale Thermocouple Formed by Tungsten and Platinum Nanosized Strips
- 5.3 Resistive Thermal Nanosensor Fabricated by Focused-Ion-Beam Chemical-Vapor-Deposition (FIB-CVD)
- 5.4 Carbon “Nanowire-on-Diamond” Resistive Temperature Nanosensor
- 5.5 Carbon Nanotube Grown on Nickel Film as a Resistive Low-temperature (10–300 K) Nanosensor
- 5.6 Laterally Grown CNTs between Two Microelectrodes as a Resistive Temperature Nanosensor
- 5.7 Silicon Nanowire Temperature Nanosensors: Resistors and Diode Structures
- 5.8 Ratiometric Fluorescent Nanoparticles for Temperature Sensing
- 5.9 Er3+/Yb3+ Co-Doped Gd2O3 Nanophosphor as a Temperature Nanosensor, Using Fluorescence Intensity Ratio Technique
- 5.10 Optical Heating of Yb3+-Er3+ Co-Doped Fluoride Nanoparticles and Distant Temperature Sensing through Luminescence
- 5.11 Porphyrin-Containing Copolymer as a Thermochromic Nanosensor
- 5.12 Silicon-Micromachined Scanning Thermal Profiler (STP)
- 5.13 Superconducting Hot Electron Nanobolometers
- 5.14 Thermal Convective Accelerometer Using CNT Sensing Element
- 5.15 Single-Walled Carbon Nanotube Sensor for Airflow Measurement
- 5.16 Vacuum Pressure and Flow Velocity Sensors, Using Batch-Processed CNT Wall
- 5.17 Nanogap Pirani Gauge
- 5.18 Carbon Nanotube-Polymer Nanocomposite as a Conductivity Response Infrared Nanosensor
- 5.19 Nanocalorimetry
- 5.20 Discussion and Conclusions
- Review Exercises
- References
-
6. Optical Nanosensors
- 6.1 Introduction
- 6.2 Noble-Metal Nanoparticles With LSPR and UV-Visible Spectroscopy
- 6.3 Nanosensors Based on Surface-Enhanced Raman Scattering
- 6.4 Colloidal SPR Colorimetric Gold Nanoparticle Spectrophotometric Sensor
- 6.5 Fiber-Optic Nanosensors
- 6.6 Nanograting-Based Optical Accelerometer
- 6.7 Fluorescent pH-Sensitive Nanosensors
- 6.8 Disadvantages of Optical Fiber and Fluorescent Nanosensors for Living Cell Studies
- 6.9 PEBBLE Nanosensors to Measure the Intracellular Environment
- 6.10 Quantum Dots as Fluorescent Labels
- 6.11 Quantum Dot FRET-Based Probes
- 6.12 Electrochemiluminescent Nanosensors for Remote Detection
- 6.13 Crossed Zinc Oxide Nanorods As Resistive UV-Nanosensors
- 6.14 Discussion and Conclusions
- Review Exercises
- References
-
7. Magnetic Nanosensors
- 7.1 Introduction
- 7.2 Magnetoresistance Sensors
- 7.3 Tunneling Magnetoresistance
- 7.4 Limitations, Advantages, and Applications of GMR and TMR Sensors
- 7.5 Magnetic Nanoparticle Probes for Studying Molecular Interactions
- 7.6 Protease-Specific Nanosensors for MRI
- 7.7 Magnetic Relaxation Switch Immunosensors
-
7.8 Magneto Nanosensor Microarray Biochip
- 7.8.1 Rationale and Motivation
- 7.8.2 Sensor Choice, Design Considerations, Passivation, and Magnetic Nanotag Issues
- 7.8.3 Understanding Magnetic Array Operation
- 7.8.4 Influence of Reaction Conditions on the Sensor
- 7.8.5 DNA and Tumor Marker Detection
- 7.8.6 GMR-Based Detection System With Zeptomole (10−21 Mol) Sensitivity
- 7.8.7 Bead ARray Counter (BARC) Biosensor
- 7.9 Needle-Type SV-GMR Sensor for Biomedical Applications
- 7.10 Superconductive Magnetic Nanosensor
- 7.11 Electron Tunneling-Based Magnetic Field Sensor
- 7.12 Nanowire Magnetic Compass and Position Sensor
- 7.13 Discussion and Conclusions
- Review Exercises
- References
-
4. Mechanical Nanosensors
-
Part IV Chemical and Biological Nanosensors
-
8. Chemical Nanosensors
- 8.1 Introduction
- 8.2 Gas Sensors Based on Nanomaterials
- 8.3 Metallic Nanoparticle-Based Gas Sensors
- 8.4 Metal Oxide Gas Sensors
- 8.5 Carbon Nanotube Gas Sensors
- 8.6 Porous Silicon–Based Gas Sensor
- 8.7 Thin Organic Polymer Film-Based Gas Sensors
- 8.8 Electrospun Polymer Nanofibers as Humidity Sensors
- 8.9 Toward Large Nanosensor Arrays and Nanoelectronic Nose
- 8.10 CNT-, Nanowire- and Nanobelt-Based Chemical Nanosensors
- 8.11 Optochemical Nanosensors
- 8.12 Discussion and Conclusions
- Review Exercises
- References
-
9. Nanobiosensors
- 9.1 Introduction
-
9.2 Nanoparticle-Based Electrochemical Biosensors
- 9.2.1 Nitric Oxide Electrochemical Sensor
- 9.2.2 Determination of Dopamine, Uric Acid, and Ascorbic Acid
- 9.2.3 Detection of CO
- 9.2.4 Glucose Detection
- 9.2.5 Gold Nanoparticle DNA Biosensor
- 9.2.6 Monitoring Allergen-Antibody Reactions
- 9.2.7 Hepatitis B Immunosensor
- 9.2.8 Carcinoembryonic Antigen Detection
- 9.2.9 Escherichia coli Detection in Milk Samples
- 9.3 CNT-Based Electrochemical Biosensors
- 9.4 Functionalization of CNTs for Biosensor Fabrication
- 9.5 QD (Quantum Dot)-Based Electrochemical Biosensors
- 9.6 Nanotube and Nanowire-Based FET Nanobiosensors
- 9.7 Cantilever-Based Nanobiosensors
-
9.8 Optical Nanobiosensors
- 9.8.1 Aptamers
- 9.8.2 Aptamer-Modified Au Nanoparticles as a Colorimetric Adenosine Nanosensor
- 9.8.3 Aptamer-Based Multicolor Fluorescent Gold Nanoprobe for Simultaneous Adenosine, Potassium Ion, and Cocaine Detection
- 9.8.4 Aptamer-Capped QD as a Thrombin Nanosensor
- 9.8.5 QD Aptameric Cocaine Nanosensor
- 9.9 Biochips (or Microarrays)
- 9.10 Discussion and Conclusions
- Review Exercises
- References
-
8. Chemical Nanosensors
-
Part V Emerging Applications of Nanosensors
-
10. Nanosensors for Societal Benefits
- 10.1 Air Pollutants
- 10.2 Nanosensors for Particulate Matter Detection
-
10.3 Nanosensors for Carbon Monoxide Detection
- 10.3.1 Au Nanoparticle-Based Miniature CO Detector
- 10.3.2 CuO Nanowire Sensor on Micro-Hotplate
- 10.3.3 ZnO Nanowall-Based Conductometric Sensor
- 10.3.4 ZnO NPs-Loaded 3D Reduced Graphene Oxide (ZnO/3D-rGO) Sensor
- 10.3.5 Europium-Doped Cerium Oxide Nanoparticles Thick-Film Sensor
- 10.3.6 Pt-decorated SnO2 Nanoparticles Sensor
- 10.4 Nanosensors for Sulfur Dioxide Detection
- 10.5 Nanosensors for Nitrogen Dioxide Detection
- 10.6 Nanosensors for Ozone Detection
-
10.7 Nanosensors for VOC Detection
- 10.7.1 Chemiresistive Sensor Using Gold Nanoparticles
- 10.7.2 Metal-Organic Framework (MOF) Nanoparticle-Based Capacitive Sensor
- 10.7.3 Al-Doped ZnO Nanowire {(ZnO:Al)NW}Sensor
- 10.7.4 Nickel-Doped Tin Oxide Nanoparticle (Ni-SnO2 NP) Sensor for Formaldehyde
- 10.7.5 Palladium Nanoparticle (PdNP)/Nickel Oxide (NiO) Thin- Film/Palladium (Pd) Thin-Film Sensor for Formaldehyde
- 10.7.6 Surface Acoustic Wave (SAW) Sensor With Polymer-Sensitive Film Containing Embedded Nanoparticles
- 10.7.7 Resorcinol-Functionalized Gold Nanoparticle Colorimetric Probe for Formaldehyde Detection
- 10.8 Nanosensors for Ammonia Detection
- 10.9 Water Pollutants
-
10.10 Nanosensors for Detection of Escherichia coli 0157:H7
- 10.10.1 Magnetoelastic Sensor Amplified With Chitosan-Modified Fe3O4 Magnetic Nanoparticles (CMNPs)
- 10.10.2 Mercaptoethylamine (MEA)-Modified Gold Nanoparticle Sensor
- 10.10.3 Cysteine-Capped Gold Nanoparticle Sensor
- 10.10.4 Three Nanoparticles-Based Biosensor (Iron Oxide, Gold, and Lead Sulfide)
- 10.10.5 Magneto-Fluorescent Nanosensor (MfnS)
- 10.10.6 Signal-Off Impedimetric Nanosensor With a Sensitivity Enhancement by Captured Nanoparticles
- 10.10.7 An Impedimetric Biosensor for E. coli O157:H7 Based on the Use of Self-Assembled Gold Nanoparticles (AuNPs) and Protein G-Thiol (PrG-Thiol) Scaffold
- 10.10.8 Gold Nanoparticles Surface Plasmon Resonance (AuNP SPR) Chip
- 10.10.9 Microfluidic Nanosensor Working on Aggregation of Gold Nanoparticles and Imaging by Smartphone
-
10.11 Nanosensors for Detection of Vibrio cholerae and Cholera Toxin
- 10.11.1 Lactose-Stabilized Gold Nanoparticles
- 10.11.2 ssDNA/Nanostructured MgO (nMgO)/Indium Tin Oxide (ITO) Bioelectrode
- 10.11.3 Nanostructured MgO (nMgO) Photoluminescence Sensor
- 10.11.4 Lyophilized Gold Nanoparticle/Polystyrene-Co-Acrylic Acid-Based Genosensor
- 10.11.5 Polystyrene-co-Acrylic Acid (PSA) Latex Nanospheres
- 10.11.6 Graphene Nanosheet Bioelectrode with Lipid Film Containing Ganglioside GM1 Receptor of Cholera Toxin
- 10.12 Nanosensors for Detection of Pseudomonas aeruginosa
- 10.13 Nanosensors for Detection of Legionella pneumophila
-
10.14 Nanosensors for Detection of Mercury Ions
- 10.14.1 Thymine Derivative (N-T) Decorated Gold Nanoparticle Sensor
- 10.14.2 Smartphone-Based Microwell Reader (MR S-phone) AuNP-Aptamer Colorimetric Sensor
- 10.14.3 Starch-Stabilized Silver Nanoparticle-Based Colorimetric Sensor
- 10.14.4 Chitosan-Stabilized Silver Nanoparticle (Chi-AgNP)-Based Colorimetric Sensor
-
10.15 Nanosensors for Detection of Lead Ions
- 10.15.1 Glutathione (GSH)-Stabilized Silver Nanoparticle (AgNP) Sensor
- 10.15.2 Maleic acid (MA)-Functionalized Gold Nanoparticle (AuNP) Sensor
- 10.15.3 Label-Free Gold Nanoparticles (AuNPs) in the Presence of Glutathione (GSH)
- 10.15.4 Gold Nanoparticles (AuNPs) Conjugated with Thioctic Acid (TA) and Fluorescent Dansyl Hydrazine (DNS) Molecules
- 10.15.5 Valine-Capped Gold Nanoparticle Sensor
- 10.15.6 Polyvinyl Alcohol (PVA)-Stabilized Colloidal Silver Nanoparticles (Ag NPs) in the Presence of Dithizone
- 10.15.7 Gold Nanoparticle (AuNP)-Graphene (GR)-Modified Glassy Carbon Electrode (GCE)
-
10.16 Nanosensors for Detection of As(III) ions
- 10.16.1 Portable Surface-Enhanced Raman Spectroscopy (SERS) System
- 10.16.2 Surface Plasmon Resonance (SPR) Nanosensor
- 10.16.3 FePt Bimetallic Nanoparticle (FePt-NP) Sensor
- 10.16.4 Gold Nanoparticles (AuNPs)-Modified Glassy Carbon Electrode (GCE) for Co-Detection of As(III) and Se(IV)
- 10.16.5 Silver Nanoparticle-Modified Gold Electrode
- 10.16.6 Carbon Nanoparticle (CNP)/Gold Nanoparticle (AuNP)-Modified Glassy Carbon Electrode (GCE) Aptasensor
- 10.16.7 Gold Nanostructured Electrode on a Gold Foil (Au/GNE)
- 10.16.8 Bimetallic Nanoparticle (NP) and [Bimetallic NP + Polyaniline (PANI)] Composite-Modified Screen-Printed Carbon Electrode (SPCE)
- 10.16.9 Ranolazine (Rano)-Functionalized Copper Nanoparticles (CuNPs)
- 10.17 Nanosensors for Detection of Cr(VI) Ions
-
10.18 Nanosensors for Detection of Cd2+ ions
- 10.18.1 Gold Nanoparticle Amalgam (AuNPA)-Modified Screen-Printed Electrode (SPE)
- 10.18.2 Turn-On Surface-Enhanced Raman Scattering (SERS) Sensor
- 10.18.3 Thioglycerol (TG)-Capped CdSe Quantum Dots (QDs)
- 10.18.4 CdTe Quantum (CdTe QD) Dot-Based Hybrid Probe
- 10.18.5 Aptamer-Functionalized Gold Nanoparticle (AuNP) Sensor
-
10.19 Nanosensors for Detection of Cu2+ ions
- 10.19.1 Azide and Terminal Alkyne-Functionalized Gold Nanoparticle (AuNP) Sensor
- 10.19.2 Cadmium Sulfide Nanoparticle (CdS NP)-Gold Quantum Dot (Au QD) Sensor
- 10.19.3 Multiple Antibiotic Resistance Regulator (MarR)-Functionalized Gold Nanoparticle (AuNP) Sensor
- 10.19.4 Casein Peptide-Functionalized Silver Nanoparticle (AgNP) Sensor
-
10.20 Nanosensors for Detection of Pesticides
- 10.20.1 DDT (Dichlorodiphenyltrichloroethane)
- 10.20.2 2,4-Dichlorophenoxyacetic Acid (2,4-D)
- 10.20.3 Carbofuran (CBF)
- 10.20.4 Methomyl
- 10.20.5 Dimethoate
- 10.20.6 Atrazine
- 10.20.7 Paraoxon-Ethyl
- 10.20.8 Acetamiprid
- 10.20.9 Hexachlorobenzene (HCB), Perchlorobenzene
- 10.20.10 Malathion (MLT): Diethyl 2-[(dimethoxyphosphorothioyl)sulfanyl]butanedioate
- 10.20.11 Dithiocarbamate (DTC) Pesticide Group
- 10.21 Discussion and Conclusions
- Review Exercises
- References
-
11. Nanosensors for Industrial Applications
- 11.1 Nanosensors for Detection of Food-Borne Pathogenic Bacteria
- 11.2 Nanosensors for Detection of Food-Borne Toxins
-
11.3 Nanosensors for Cancer Cell/Biomarker Detection
- 11.3.1 Breast Cancer Cell MCF-7
- 11.3.2 HER2, A Medical Sign of Breast Cancer
- 11.3.3 Serum Amyloid A1 (SAA1) Antigen, a Lung-Cancer-Specific Biomarker
- 11.3.4 Prostate-Specific Antigen (PSA), a Biomarker for Prostate Cancer
- 11.3.5 miRNA-106a, the Biomarker of Gastric Cancer
- 11.3.6 Colorectal Carcinoma Cell
- 11.3.7 Cluster of Differentiation 10 (CD10) Antigen, the Common Acute Lymphoblastic Leukemia Antigen
-
11.4 Nanosensors for Detection of Infectious Disease Indicators
- 11.4.1 IgG Antibodies to Hepatitis B Surface Antigen (α-HbsAg IgG Antibodies)
- 11.4.2 Dengue-1 RNA
- 11.4.3 Japanese Encaphilitis Virus (JEV) Antigen
- 11.4.4 HIV-1 p24 Antigen
- 11.4.5 Zika Virus (ZIKV)
- 11.4.6 Severe Acute Respiratory Syndrome Coronavirus 2
- 11.4.7 Pneumococcus or Streptococcus pneumoniae
- 11.4.8 Acid-Fast Bacilli (AFB)
- 11.4.9 Streptococcus pyogenes Single-Stranded Genomic-DNA (S. pyogenes ssg-DNA)
- 11.4.10 Plasmodium falciparum Heat-Shock Protein 70 (PfHsp70)
- 11.5 Nanosensors for Automotive, Aerospace, and Consumer Applications
- 11.6 Discussion and Conclusions
- Review Exercises
- References
-
12. Nanosensors for Homeland Security
- 12.1 Necessity of Nanosensors for Trace Explosive Detection
-
12.2 2,4,6-Trinitrotoluene (TNT) Nanosensors
- 12.2.1 Curcumin Nanomaterials Surface Energy Transfer (NSET) Probe
- 12.2.2 Amine-Functionalized Silica Nanoparticles (SiO2-NH2) Colorimetric Sensor
- 12.2.3 Amine-Modified Gold@Silver Nanoparticles-Based Colorimetric Paper Sensor
- 12.2.4 Polyethylenimine (PEI)-Capped Downconverting β-NaYF4:Gd3+,Tb3+@PEI Nanophosphor Luminescence Sensor
- 12.2.5 Janus Amine-Modified Upconverting NaYF4:Yb3+/Er3+ Nanoparticle (UCNP) Micromotor-Based On-Off Luminescence Sensor
- 12.2.6 AgInS2 (AIS) Quantum Dot (QD) Fluorometric Probe
- 12.2.7 TNT Recognition Peptide Single-Walled Carbon Nanotubes (SWCNTs) Hybrid Anchored Surface Plasmon Resonance (SPR) Chip
- 12.2.8 Non-Imprinted and Molecularly Imprinted Bis-Aniline–Cross-Linked Gold Nanoparticles (AuNPs) Composite/Gold Layer for Surface Plasmon Resonance, and Related Sensors
- 12.3 TNT/Tetryl (Tetranitro-N-methylamine) Nanosensors
-
12.4 Picric Acid Nanosensors
- 12.4.1 Zinc Oxide (ZnO) Nanopeanuts–Modified Screen-Printed Electrode (SPE)
- 12.4.2 Nanostructured Cuprous Oxide (Cu2O)-Coated Screen-Printed Electrode
- 12.4.3 β-Cyclodextrin-Functionalized Reduced Graphene Oxide (rGO) Sensor
- 12.4.4 Conjugated Polymer Nanoparticles (CPNPs) Fluorescence/Current Response Sensor
- 12.4.5 Surface-Enhanced Raman Scattering (SERS) Using Hydrophobic Silver Nanopillar Substrates
-
12.5 Nanosensors for 1,3,5-Trinitro-1,3,5-Triazacyclohexane (RDX) and Other Explosives
- 12.5.1 Gold Nanoparticles Substrate for RDX (Cyclotrimethylenetrinitramine) Detection by SERS
- 12.5.2 4-Aminothiophenol (4-ATP)-Functionalized Gold Nanoparticle Colorimetric Sensor for RDX (Cyclotrimethylenetrinitramine)/HMX (Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine)
- 12.5.3 Cadmium Sulfide-Diphenylamine (CdS QD-DPA) FRET-Based Fluorescence Sensor for RDX (Cyclotrimethylenetrinitramine)/PETN (Pentaerythritol Tetranitrate)
- 12.5.4 Gold Nanoparticles/Nitroenergetic Memory-Poly(Carbazole-Aniline) P(Cz-co-ANI) Film-Modified Glassy Carbon Electrode (GCE) for RDX (Cyclotrimethylenetrinitramine), TNT (2,4,6-Trinitrotoluene), DNT (2,4-Dinitrotoluene), and HMX (Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine) Detection
- 12.6 Nanosensor Requirements for Detection of Biothreat Agents
- 12.7 Anthrax Spore Nanosensors
- 12.8 Rapid Screening Lateral Flow Plague Bacterium (Yersinia pestis) Nanosensor
- 12.9 Francisella tularensis Bacterium Nanosensors
-
12.10 Brucellosis Bacterium (Brucella) Nanosensors
- 12.10.1 Gold Nanoparticle–Modified Disposable Screen-Printed Carbon Electrode (SPCE) Immunosensor for Brucella melitensis
- 12.10.2 Oligonucleotide-Activated Gold Nanoparticle (Oligo-AuNP) Colorimetric Probe for Brucella Abortus
- 12.10.3 Colored Silica Nanoparticles Colorimetric Immunoassay for Brucella abortus
- 12.11 Oligonucleotide/Gold Nanoparticles/Magnetic Beads–Based Smallpox Virus (Variola) Colorimetric Sensor
- 12.12 Ebola Virus (EBOV) Nanosensors
- 12.13 Ricin Toxin Nanosensors
-
12.14 Staphylococcal Enterotoxin B (SEB) Toxin Nanosensors
- 12.14.1 SEB Detection Through Hydrogen Evolution Inhibition by Enzymatic Deposition of Metallic Copper on Platinum Nanoparticles (PtNPs)-Modified Glassy Carbon Electrode
- 12.14.2 4-Nitrothiophenol (4-NTP)-Encoded Gold Nanoparticle Core/Silver Shell (AuNP@Ag)-Based SERS Immunosensor
- 12.14.3 Aptamer Recognition Element and Gold Nanoparticle Color Indicator–Based Assay
-
12.15 Aflatoxin Nanosensors
- 12.15.1 Polyaniline (PANI) Nanofibers–Gold Nanoparticles Composite–Based Indium Tin Oxide (ITO) Disk Electrode for AFB1
- 12.15.2 Gold Nanodots (AuNDs)/Reduced Graphene Oxide Nanosheets/Indium Tin Oxide Substrate for Raman Spectroscopy and Electrochemical Measurements for AFB1
- 12.15.3 AFM1 Aptamer–Triggered and DNA-Fueled Signal-On Fluorescence Sensor for AFM1
- 12.16 Discussion and Conclusions
- Review Exercises
- References
-
10. Nanosensors for Societal Benefits
-
Part VI Powering, Networking, and Trends of Nanosensors
-
13. Nanogenerators and Self-Powered Nanosensors
- 13.1 Devising Ways to Get Rid of Environment-Devastating Batteries
- 13.2 Output Current of Tribo/Piezoelectric Nanogenerators as the Outcome of Second Term in Maxwell’s Displacement Current
-
13.3 Triboelectricity-Powered Nanosensors
- 13.3.1 TENG Made From Micropatterned Polydimethylsiloxane (PDMS) Membrane/Ag Nanoparticles and Ag Nanowires Composite Covered Aluminum Foil as a Static/Dynamic Pressure Nanosensor
- 13.3.2 Electrolytic Solution/Fluorinated Ethylene Propylene (FEP) Film TENG Nanosensor for pH Measurement
- 13.3.3 Ethanol Nanosensor Using Dual-Mode TENG: Water/TiO2 Nanomaterial TENG and SiO2 Nanoparticles (SiO2 NPs)/Polytetrafluoroethylene (PTFE) TENG
- 13.3.4 Dopamine Nanosensor Using Al/PTFE with Nanoparticle Array TENG
- 13.3.5 Mercury Ion Nanosensor Using Au Film with Au Nanoparticles/PDMS TENG
- 13.4 Piezoelectricity-Powered Nanosensors
- 13.5 Miscellaneous Powered Nanosensors
- 13.6 Discussion and Conclusions
- Review Exercises
- References
-
14. Wireless Nanosensor Networks and IoNT
- 14.1 Evolution of Wireless Nanosensor Concept
- 14.2 Promising Communication Approaches for Nanonetworking
- 14.3 Molecular Communication (MC)
- 14.4 Electromagnetic Communication (EMC)
- 14.5 Envisaged Electromagnetic Integrated Nanosensor Module
- 14.6 WNNs Formation Using EMC Nanosensor Modules: The WNN Architecture
- 14.7 Frequency Bands of Electromagnetic WNN Operation
- 14.8 Modulation Techniques for Electromagnetic WNNs
- 14.9 Channel Sharing Protocol in WNN
- 14.10 Information Routing in WNNs
- 14.11 Failure Mechanisms and Reliability Issues of WNNs
- 14.12 Internet of Nano Things (IoNT): The Nanomachine
- 14.13 Discussion and Conclusions
- Review Exercises
- References
-
15. Overview and Future Trends of Nanosensors
- 15.1 Introduction
- 15.2 Scanning Tunneling Microscope
- 15.3 Atomic Force Microscope
- 15.4 Mechanical Nanosensors
- 15.5 Thermal Nanosensors
- 15.6 Optical Nanosensors
- 15.7 Magnetic Nanosensors
- 15.8 Chemical Nanosensors
- 15.9 Nanobiosensors
- 15.10 Nanosensor Fabrication Aspects
- 15.11 In Vivo Nanosensor Problems
- 15.12 Molecularly Imprinted Polymers for Biosensors
- 15.13 Applications Perspectives of Nanosensors
- 15.14 Interfacing Issues for Nanosensors: Power Consumption and Sample Delivery Problems
- 15.15 Depletion-Mediated Piezoelectric Actuation for NEMS
- 15.16 Batteryless Nanosensors
- 15.17 Networking Nanosensors Wirelessly
- 15.18 Discussion and Conclusions
- Review Exercises
- References
-
13. Nanogenerators and Self-Powered Nanosensors
- Index
Product information
- Title: Nanosensors, 2nd Edition
- Author(s):
- Release date: February 2021
- Publisher(s): CRC Press
- ISBN: 9781000331356
You might also like
article
Reinventing the Organization for GenAI and LLMs
Previous technology breakthroughs did not upend organizational structure, but generative AI and LLMs will. We now …
book
Et al.
Et al. is a satirical academic journal that uses machine learning and scientific principles on absurd …
audiobook
The Year in Tech, 2025
<B>A year of HBR's essential thinking on tech—all in one place.</B><br/><br/><br/><br/>Generative AI, biometrics, spatial computing, electric …
article
Run Llama-2 Models
Llama is Meta’s answer to the growing demand for LLMs. Unlike its well-known technological relative, ChatGPT, …