Nanosensors, 2nd Edition

Book description

Nanosensors: Physical, Chemical, and Biological, Second Edition offers a panoramic view of the field and related nanotechnologies with extraordinary clarity and depth.

Table of contents

  1. Cover
  2. Half-Title
  3. Series
  4. Title
  5. Copyright
  6. Dedication
  7. Contents
  8. Preface to the Second Edition
  9. Preface to the First Edition
  10. Acknowledgments
  11. Author’s Profile
  12. About the Book (2nd Edition)
  13. Abbreviations and Acronyms
  14. Mathematical Notation
  15. Part I Fundamental Concepts of Nanosensors
    1. 1. Introduction to Nanosensors
      1. 1.1 Getting Started with Nanosensors
      2. 1.2 Natural Sciences
      3. 1.3 Physics
        1. 1.3.1 Definition of Physics
        2. 1.3.2 Branches of Physics
        3. 1.3.3 Matter: Its States, Materials, and Particles
        4. 1.3.4 Molecules, Atoms, and Atomic Structure
        5. 1.3.5 Mechanics
        6. 1.3.6 Heat
        7. 1.3.7 Sound
        8. 1.3.8 Light
        9. 1.3.9 Electricity
        10. 1.3.10 Magnetism
        11. 1.3.11 Electromagnetism
        12. 1.3.12 SI System of Units
      4. 1.4 Chemistry
        1. 1.4.1 Definition of Chemistry
        2. 1.4.2 Elements and Compounds
        3. 1.4.3 Organic and Inorganic Compounds
        4. 1.4.4 Subdivisions of Chemistry
        5. 1.4.5 Natural and Artificial Elements
        6. 1.4.6 Metals, Nonmetals, and Metalloids
        7. 1.4.7 Periodic Table of Elements
        8. 1.4.8 Chemical Change and Reaction
        9. 1.4.9 Electronic Configuration (Structure) of Elements
        10. 1.4.10 Chemical Bond
        11. 1.4.11 Oxidation and Reduction
        12. 1.4.12 Acid, Base, and Salt
        13. 1.4.13 Expressing Concentrations of Solutions and Gases
        14. 1.4.14 Hydrocarbons: Saturated and Unsaturated
        15. 1.4.15 Alkyl and Aryl Groups
        16. 1.4.16 Alcohols and Phenols
        17. 1.4.17 Carboxylic Acids
        18. 1.4.18 Aldehydes and Ketones
        19. 1.4.19 Amines and Amino Acids
        20. 1.4.20 Lipids
        21. 1.4.21 Carbohydrates
        22. 1.4.22 Proteins and Enzymes
      5. 1.5 Biology
        1. 1.5.1 What Is Biology?
        2. 1.5.2 Branches of Biology
        3. 1.5.3 Origin and Evolution of Life
        4. 1.5.4 The Cell
        5. 1.5.5 Differences between Bacteria and Viruses
        6. 1.5.6 Heredity, Chromosomes, Genes, and Related Terms
      6. 1.6 Semiconductor Electronics
        1. 1.6.1 What Is Semiconductor Electronics?
        2. 1.6.2 Energy Bands in Conductors, Semiconductors, and Insulators
        3. 1.6.3 Interesting Properties of Semiconductors
        4. 1.6.4 P–N Junction
        5. 1.6.5 Bipolar Junction Transistor
        6. 1.6.6 Metal-Oxide-Semiconductor Field-Effect Transistor
        7. 1.6.7 Analog and Digital Circuits
      7. 1.7 Nanometer and Appreciation of Its Magnitude
      8. 1.8 Nanoscience and Nanotechnology
      9. 1.9 Nanomaterials and the Unusual Behavior at Nanoscales
      10. 1.10 Moving toward Sensors and Transducers: Meaning of Terms “Sensors” and “Transducers”
      11. 1.11 Definition of Sensor Parameters and Characteristics
      12. 1.12 Evolution of Semiconductor-Based Microsensors
      13. 1.13 From the Macrosensor to the Microsensor Age and the Necessity for Nanoscale Measurements
        1. 1.13.1 A Miniaturized Sensor Can Accomplish Many Tasks That a Bulky Device Cannot Perform
        2. 1.13.2 The Issue of Power Consumption
        3. 1.13.3 Low Response Times
        4. 1.13.4 Multi-Analyte Detection and Multifunctionality
        5. 1.13.5 Sensitivity Considerations and Need for Functionalization
        6. 1.13.6 Interfacing with Biomolecules
        7. 1.13.7 Low Costs
        8. 1.13.8 Possibility of a New Genre of Devices
      14. 1.14 Definition and Classification of Nanosensors
      15. 1.15 Physical, Chemical, and Biological Nanosensors
      16. 1.16 Some Examples of Nanosensors
        1. 1.16.1 Common Nanosensors
        2. 1.16.2 Carbon Nanotube-Based Nanosensors
        3. 1.16.3 Nanoscaled Thin-Film Sensors
        4. 1.16.4 Microcantilever- and Nanocantilever-Enabled Nanosensors
      17. 1.17 Getting Familiar with Analytical and Characterization Tools: Microscopic Techniques to View Nanomaterials and Nanosensors
        1. 1.17.1 Scanning Electron Microscope
        2. 1.17.2 Transmission Electron Microscope
        3. 1.17.3 Scanning Tunneling Microscope
        4. 1.17.4 Atomic Force Microscope
      18. 1.18 Spectroscopic Techniques for Analyzing Chemical Composition of Nanomaterials and Nanosensors
        1. 1.18.1 Infrared Spectroscopy
        2. 1.18.2 Ultraviolet-Visible Spectroscopy
        3. 1.18.3 Raman Spectroscopy
        4. 1.18.4 Energy-Dispersive X-Ray Spectroscopy (EDX)
        5. 1.18.5 Auger Electron Spectroscopy
        6. 1.18.6 X-Ray Diffraction
        7. 1.18.7 X-Ray Photoelectron Spectroscopy or Electron Spectroscopy for Chemical Analysis
        8. 1.18.8 Secondary Ion Mass Spectrometry
      19. 1.19 The Displacement Nanosensor: STM
        1. 1.19.1 Principle of Operation
        2. 1.19.2 Transmission Coefficient
        3. 1.19.3 Tunneling Current
        4. 1.19.4 Measurements with STM
          1. 1.19.4.1 Topography
          2. 1.19.4.2 Density of States
          3. 1.19.4.3 Linecut
          4. 1.19.4.4 DOS Map
      20. 1.20 The Force Nanosensor: AFM
        1. 1.20.1 Operating Principle
        2. 1.20.2 Lennard-Jones Potential and the Van der Waals Forces
        3. 1.20.3 Other Forces and Potentials
        4. 1.20.4 Force Sensor (Cantilever) and Force Measurement
        5. 1.20.5 Static and Dynamic Atomic Force Microscopy
        6. 1.20.6 Classification of Modes of Operation of AFM on the Basis of Contact
          1. 1.20.6.1 Contact Mode
          2. 1.20.6.2 Noncontact Mode
          3. 1.20.6.3 Tapping Mode (Intermittent-Contact Mode)
        7. 1.20.7 Frequency-Modulation Atomic Force Microscopy
        8. 1.20.8 Generic Calculation
      21. 1.21 Outline and Organization of the Book
      22. 1.22 Discussion and Conclusions
      23. Review Exercises
      24. References
  16. Part II Nanomaterials and Micro/Nanofabrication Facilities
    1. 2. Materials for Nanosensors
      1. 2.1 Introduction
      2. 2.2 Nanoparticles or Nanoscale Particles, the Importance of the Intermediate Regime between Atoms and Molecules, and Bulk Matter
      3. 2.3 Classification of Nanoparticles on the Basis of Their Composition and Occurrence
      4. 2.4 Core-/Shell-Structured Nanoparticles
        1. 2.4.1 Inorganic Core/Shell Nanoparticles
        2. 2.4.2 Organic–Inorganic Hybrid Core/Shell Nanoparticles
      5. 2.5 Shape Dependence of Properties at the Nanoscale
      6. 2.6 Dependence of Properties of Nanoparticles on Particle Size
      7. 2.7 Surface Energy of a Solid
      8. 2.8 Metallic Nanoparticles and Plasmons
        1. 2.8.1 Surface Plasmon Resonance on Bulk Metals
        2. 2.8.2 Surface Plasmon Band Phenomenon in Metal Nanoparticles
      9. 2.9 Optical Properties of Bulk Metals and Metallic Nanoparticles
        1. 2.9.1 Light Absorption by Bulk Metals and Metallic Nanoparticles
        2. 2.9.2 Light Scattering by Nanoparticles
      10. 2.10 Parameters Controlling the Position of Surface Plasmon Band of Nanoparticles
        1. 2.10.1 Effect of the Surrounding Dielectric Medium
        2. 2.10.2 Influence of Agglomeration-Preventing Ligands and Stabilizers
        3. 2.10.3 Effect of Nanoparticle Size and Shape
        4. 2.10.4 Compositional Effect
      11. 2.11 Quantum Confinement
        1. 2.11.1 Quantum Confinement in Metals
        2. 2.11.2 Quantum Confinement in Semiconductors
        3. 2.11.3 Bandgap Energies
        4. 2.11.4 Bandgap Behavior Explanation by Particle-in-a-One-Dimensional Box Model of Electron Behavior
      12. 2.12 Quantum Dots
        1. 2.12.1 Fundamentals
        2. 2.12.2 Tight-Binding Approach to Optical Bandgap (Exciton Energy) Versus Quantum Dot Size
        3. 2.12.3 Comparison of Quantum Dots With Organic Fluorophores
        4. 2.12.4 Types of Quantum Dots Depending on Composition
        5. 2.12.5 Classification of Quantum Dots Based on Structure
        6. 2.12.6 Capping Molecules or Ligands on the Surfaces of Quantum Dots
      13. 2.13 Carbon Nanotubes
        1. 2.13.1 What Are Carbon Nanotubes?
        2. 2.13.2 Structure of Graphene
        3. 2.13.3 Structure of SWCNTs
        4. 2.13.4 Mechanical Properties of CNTs
        5. 2.13.5 Electrical, Electronic, and Magnetic Properties of CNTs
      14. 2.14 Inorganic Nanowires
      15. 2.15 Nanoporous Materials
        1. 2.15.1 Nanoporous Silicon
        2. 2.15.2 Nanoporous Alumina
        3. 2.15.3 Nano-Grained Thin Films
      16. 2.16 Discussion and Conclusions
      17. Review Exercises
      18. References
    2. 3. Nanosensor Laboratory
      1. 3.1 Introduction
      2. 3.2 Nanotechnology Division
        1. 3.2.1 Synthesis of Metal Nanoparticles
          1. 3.2.1.1 Gold Nanoparticles
          2. 3.2.1.2 Silver Nanoparticles
          3. 3.2.1.3 Platinum Nanoparticles
          4. 3.2.1.4 Palladium Nanoparticles
        2. 3.2.2 Synthesis of Semiconductor Nanoparticles
        3. 3.2.3 Synthesis of Semiconductor Nanocrystals: Quantum Dots
          1. 3.2.3.1 CdSe/ZnS Core/Shell QDs
          2. 3.2.3.2 CdSe/CdS Core/Shell QDs
          3. 3.2.3.3 PbS and PbS/CdS Core/Shell QDs
        4. 3.2.4 Synthesis of Metal Oxide Nanoparticles
        5. 3.2.5 Synthesis of Carbon Nanotubes
          1. 3.2.5.1 Arc Discharge Method of CNT Production
          2. 3.2.5.2 Laser Ablation Method of CNT Production
          3. 3.2.5.3 Chemical Vapor Deposition Method of CNT Production
          4. 3.2.5.4 Difficulties Faced with Carbon Nanotubes
      3. 3.3 Micro- and Nanoelectronics Division
        1. 3.3.1 Semiconductor Clean Room
        2. 3.3.2 Silicon Single-Crystal Growth and Wafer Production
        3. 3.3.3 Molecular Beam Epitaxy
        4. 3.3.4 Mask Making
        5. 3.3.5 Thermal Oxidation
        6. 3.3.6 Diffusion of Impurities in a Semiconductor
        7. 3.3.7 Ion Implantation
        8. 3.3.8 Photolithography
          1. 3.3.8.1 Physical Limits
          2. 3.3.8.2 Optical Lithography
          3. 3.3.8.3 Electron-Beam Lithography
          4. 3.3.8.4 X-Ray Lithography
          5. 3.3.8.5 Dip-Pen Nanolithography
          6. 3.3.8.6 Nanoimprint Lithography
          7. 3.3.8.7 Nanosphere Lithography
        9. 3.3.9 Chemical Vapor Deposition
        10. 3.3.10 Wet Chemical Etching and Common Etchants
        11. 3.3.11 Reactive Ion Etching
        12. 3.3.12 Focused Ion Beam Etching and Deposition
        13. 3.3.13 Metallization
        14. 3.3.14 Dicing, Wire Bonding, and Encapsulation
        15. 3.3.15 IC Downscaling: Special Technologies and Processes
          1. 3.3.15.1 Downscaling Trends
          2. 3.3.15.2 SOI-MOSFETs
          3. 3.3.15.3 SIMOX Process
          4. 3.3.15.4 Smart Cut Process
          5. 3.3.15.5 Strained Silicon Process
          6. 3.3.15.6 Top-Down and Bottom-Up Approaches
          7. 3.3.15.7 DNA Electronics
          8. 3.3.15.8 Spintronics
      4. 3.4 MEMS and NEMS Division
        1. 3.4.1 Surface and Bulk Micromachining
        2. 3.4.2 Machining by Wet and Dry Etching Techniques
        3. 3.4.3 Deep Reactive-Ion Etching
        4. 3.4.4 Front- and Back-Side Mask Alignment
        5. 3.4.5 Multiple Wafer Bonding and Glass-Silicon Bonding
        6. 3.4.6 Wafer Lapping
        7. 3.4.7 Chemical Mechanical Polishing
        8. 3.4.8 Electroplating
        9. 3.4.9 LIGA Process
        10. 3.4.10 Micro-Injection Molding
        11. 3.4.11 Hot Embossing and Electroforming
        12. 3.4.12 Combination of MEMS/NEMS and CMOS Processes
      5. 3.5 Biochemistry Division
        1. 3.5.1 Surface Functionalization and Biofunctionalization of Nanomaterials
        2. 3.5.2 Immobilization of Biological Elements
        3. 3.5.3 Protocols for Attachment of Antibodies on Sensors
        4. 3.5.4 Functionalization of CNTs for Biological Applications
        5. 3.5.5 Water Solubility of Quantum Dots
        6. 3.5.6 Low Cytotoxicity Coatings
      6. 3.6 Chemistry Division
        1. 3.6.1 Nanoparticle Thin-Film Deposition
        2. 3.6.2 Polymer Coatings in Nano Gas Sensors
        3. 3.6.3 Metallic Nanoparticle Functionalization of Si Nanowires for Gas Sensing Applications
      7. 3.7 Nanosensor Characterization Division
      8. 3.8 Nanosensor Powering, Signal Processing, and Communication Division
        1. 3.8.1 Power Unit
          1. 3.8.1.1 Lithium Nanobatteries
          2. 3.8.1.2 Self-Powered Nanogenerators
          3. 3.8.1.3 Energy Harvesting from the Environment
          4. 3.8.1.4 Synthetic Chemical Batteries Based on Adenosine Triphosphate
        2. 3.8.2 Signal Processing Unit
        3. 3.8.3 Integrated Nanosensor Systems
        4. 3.8.4 Wireless Nanosensor Networks
      9. 3.9 Discussion and Conclusions
      10. Review Exercises
      11. References
  17. Part III Physical Nanosensors
    1. 4. Mechanical Nanosensors
      1. 4.1 Introduction
      2. 4.2 Nanogram Mass Sensing by Quartz Crystal Microbalance
      3. 4.3 Attogram (10−18g) and Zeptogram (10−21g) Mass Sensing by MEMS/NEMS Resonators
        1. 4.3.1 Microcantilever Definitions and Theory
          1. 4.3.1.1 Resonance Frequency Formula
          2. 4.3.1.2 Deflection Formula
        2. 4.3.2 Energy Dissipation and Q-Factor of Cantilever
        3. 4.3.3 Noise of Cantilever and Its Mass Detection Limit
        4. 4.3.4 Doubly Clamped and Free-Free Beam Resonators
      4. 4.4 Electron Tunneling Displacement Nanosensor
      5. 4.5 Coulomb Blockade Electrometer-Based Nanosensor
        1. 4.5.1 Coulomb Blockade Effect
        2. 4.5.2 Comparison with Tunneling Sensors
      6. 4.6 Nanometer-Scale Displacement Sensing by Single-Electron Transistor
      7. 4.7 Magnetomotive Displacement Nanosensor
      8. 4.8 Piezoresistive and Piezoelectric Displacement Nanosensors
      9. 4.9 Optical Displacement Nanosensor
      10. 4.10 Femtonewton Force Sensors Using Doubly Clamped Suspended Carbon Nanotube Resonators
      11. 4.11 Suspended CNT Electromechanical Sensors for Displacement and Force
      12. 4.12 Membrane-Based CNT Electromechanical Pressure Sensor
      13. 4.13 Tunnel Effect Accelerometer
        1. 4.13.1 Principle of Motion Detection
        2. 4.13.2 Construction and Working
        3. 4.13.3 Micromachined Accelerometer
      14. 4.14 NEMS Accelerometer
      15. 4.15 Silicon Nanowire Accelerometer
      16. 4.16 CNT Flow Sensor for Ionic Solutions
      17. 4.17 Discussion and Conclusions
      18. Review Exercises
      19. References
    2. 5. Thermal Nanosensors
      1. 5.1 Introduction
      2. 5.2 Nanoscale Thermocouple Formed by Tungsten and Platinum Nanosized Strips
      3. 5.3 Resistive Thermal Nanosensor Fabricated by Focused-Ion-Beam Chemical-Vapor-Deposition (FIB-CVD)
      4. 5.4 Carbon “Nanowire-on-Diamond” Resistive Temperature Nanosensor
      5. 5.5 Carbon Nanotube Grown on Nickel Film as a Resistive Low-temperature (10–300 K) Nanosensor
      6. 5.6 Laterally Grown CNTs between Two Microelectrodes as a Resistive Temperature Nanosensor
      7. 5.7 Silicon Nanowire Temperature Nanosensors: Resistors and Diode Structures
      8. 5.8 Ratiometric Fluorescent Nanoparticles for Temperature Sensing
      9. 5.9 Er3+/Yb3+ Co-Doped Gd2O3 Nanophosphor as a Temperature Nanosensor, Using Fluorescence Intensity Ratio Technique
      10. 5.10 Optical Heating of Yb3+-Er3+ Co-Doped Fluoride Nanoparticles and Distant Temperature Sensing through Luminescence
      11. 5.11 Porphyrin-Containing Copolymer as a Thermochromic Nanosensor
      12. 5.12 Silicon-Micromachined Scanning Thermal Profiler (STP)
      13. 5.13 Superconducting Hot Electron Nanobolometers
      14. 5.14 Thermal Convective Accelerometer Using CNT Sensing Element
      15. 5.15 Single-Walled Carbon Nanotube Sensor for Airflow Measurement
      16. 5.16 Vacuum Pressure and Flow Velocity Sensors, Using Batch-Processed CNT Wall
      17. 5.17 Nanogap Pirani Gauge
      18. 5.18 Carbon Nanotube-Polymer Nanocomposite as a Conductivity Response Infrared Nanosensor
      19. 5.19 Nanocalorimetry
      20. 5.20 Discussion and Conclusions
      21. Review Exercises
      22. References
    3. 6. Optical Nanosensors
      1. 6.1 Introduction
      2. 6.2 Noble-Metal Nanoparticles With LSPR and UV-Visible Spectroscopy
      3. 6.3 Nanosensors Based on Surface-Enhanced Raman Scattering
      4. 6.4 Colloidal SPR Colorimetric Gold Nanoparticle Spectrophotometric Sensor
      5. 6.5 Fiber-Optic Nanosensors
        1. 6.5.1 Fabry-Perot Reflectometric Optochemical Nanosensor, Using Optical Fibers and SWCNTs
        2. 6.5.2 In-Fiber Nanocavity Sensor
        3. 6.5.3 Fiber-Optic Nanosensors for Probing Living Cells
      6. 6.6 Nanograting-Based Optical Accelerometer
      7. 6.7 Fluorescent pH-Sensitive Nanosensors
        1. 6.7.1 Renewable Glass Nanopipette with Fluorescent Dye Molecules
        2. 6.7.2 Ratiometric pH Nanosensor
        3. 6.7.3 pH-Sensitive Microcapsules With Nanoparticle Incorporation in the Walls
      8. 6.8 Disadvantages of Optical Fiber and Fluorescent Nanosensors for Living Cell Studies
      9. 6.9 PEBBLE Nanosensors to Measure the Intracellular Environment
      10. 6.10 Quantum Dots as Fluorescent Labels
      11. 6.11 Quantum Dot FRET-Based Probes
        1. 6.11.1 QD-FRET Protein Sensor
        2. 6.11.2 QD-FRET Protease Sensor
        3. 6.11.3 QD-FRET Maltose Sensor
        4. 6.11.4 Sensor for Determining the Dissociation Constant (Kd) between Rev and RRE
      12. 6.12 Electrochemiluminescent Nanosensors for Remote Detection
      13. 6.13 Crossed Zinc Oxide Nanorods As Resistive UV-Nanosensors
      14. 6.14 Discussion and Conclusions
      15. Review Exercises
      16. References
    4. 7. Magnetic Nanosensors
      1. 7.1 Introduction
      2. 7.2 Magnetoresistance Sensors
        1. 7.2.1 Ordinary Magnetoresistance: The Hall Effect
        2. 7.2.2 Anisotropic Magnetoresistance
        3. 7.2.3 Giant Magnetoresistance
          1. 7.2.3.1 Scientific Explanation of GMR
          2. 7.2.3.2 Simple Analogies of GMR
          3. 7.2.3.3 Optimizing Parameters
          4. 7.2.3.4 GMR Sensor Structures
      3. 7.3 Tunneling Magnetoresistance
      4. 7.4 Limitations, Advantages, and Applications of GMR and TMR Sensors
        1. 7.4.1 Shortcomings
        2. 7.4.2 Advantages
        3. 7.4.3 Applications
      5. 7.5 Magnetic Nanoparticle Probes for Studying Molecular Interactions
        1. 7.5.1 DNA Analysis
        2. 7.5.2 Protein Detection
        3. 7.5.3 Virus Detection
        4. 7.5.4 Telomerase Activity Analysis
      6. 7.6 Protease-Specific Nanosensors for MRI
      7. 7.7 Magnetic Relaxation Switch Immunosensors
      8. 7.8 Magneto Nanosensor Microarray Biochip
        1. 7.8.1 Rationale and Motivation
        2. 7.8.2 Sensor Choice, Design Considerations, Passivation, and Magnetic Nanotag Issues
        3. 7.8.3 Understanding Magnetic Array Operation
        4. 7.8.4 Influence of Reaction Conditions on the Sensor
        5. 7.8.5 DNA and Tumor Marker Detection
        6. 7.8.6 GMR-Based Detection System With Zeptomole (10−21 Mol) Sensitivity
        7. 7.8.7 Bead ARray Counter (BARC) Biosensor
      9. 7.9 Needle-Type SV-GMR Sensor for Biomedical Applications
      10. 7.10 Superconductive Magnetic Nanosensor
      11. 7.11 Electron Tunneling-Based Magnetic Field Sensor
      12. 7.12 Nanowire Magnetic Compass and Position Sensor
      13. 7.13 Discussion and Conclusions
      14. Review Exercises
      15. References
  18. Part IV Chemical and Biological Nanosensors
    1. 8. Chemical Nanosensors
      1. 8.1 Introduction
      2. 8.2 Gas Sensors Based on Nanomaterials
      3. 8.3 Metallic Nanoparticle-Based Gas Sensors
      4. 8.4 Metal Oxide Gas Sensors
        1. 8.4.1 Sensing Mechanism of Metal Oxide Sensors
        2. 8.4.2 Sensitivity Controlling Parameters and the Influence of Heat Treatment
        3. 8.4.3 Effect of Additives on Sensor Response
      5. 8.5 Carbon Nanotube Gas Sensors
        1. 8.5.1 Gas-Sensing Properties of CNTs
        2. 8.5.2 Responses of SWCNTs and MWCNTs
        3. 8.5.3 Modification of CNTs
        4. 8.5.4 CNT-Based FET-Type Sensor
        5. 8.5.5 MWCNTs/SnO2 Ammonia Sensor
        6. 8.5.6 CNT-Based Acoustic Gas Sensor
      6. 8.6 Porous Silicon–Based Gas Sensor
      7. 8.7 Thin Organic Polymer Film-Based Gas Sensors
      8. 8.8 Electrospun Polymer Nanofibers as Humidity Sensors
      9. 8.9 Toward Large Nanosensor Arrays and Nanoelectronic Nose
      10. 8.10 CNT-, Nanowire- and Nanobelt-Based Chemical Nanosensors
        1. 8.10.1 CNT-Based ISFET for Nano pH Sensor
        2. 8.10.2 NW Nanosensor for pH Detection
        3. 8.10.3 ZnS/Silica Nanocable FET pH Sensor
        4. 8.10.4 Bridging Nanowire As Vapor Sensor
        5. 8.10.5 Palladium Functionalized Si NW H2 Sensor
        6. 8.10.6 Polymer-Functionalized Piezoelectric-FET Humidity Nanosensor
      11. 8.11 Optochemical Nanosensors
        1. 8.11.1 Low-Potential Quantum Dot ECL Sensor for Metal Ion
        2. 8.11.2 BSA-Activated CdTe QD Nanosensor for Sb3+ Ion
        3. 8.11.3 Functionalized CdSe/ZnS QD Nanosensor for Hg(II) Ion
        4. 8.11.4 Marine Diatom Gas Sensors
      12. 8.12 Discussion and Conclusions
      13. Review Exercises
      14. References
    2. 9. Nanobiosensors
      1. 9.1 Introduction
      2. 9.2 Nanoparticle-Based Electrochemical Biosensors
        1. 9.2.1 Nitric Oxide Electrochemical Sensor
        2. 9.2.2 Determination of Dopamine, Uric Acid, and Ascorbic Acid
        3. 9.2.3 Detection of CO
        4. 9.2.4 Glucose Detection
        5. 9.2.5 Gold Nanoparticle DNA Biosensor
        6. 9.2.6 Monitoring Allergen-Antibody Reactions
        7. 9.2.7 Hepatitis B Immunosensor
        8. 9.2.8 Carcinoembryonic Antigen Detection
        9. 9.2.9 Escherichia coli Detection in Milk Samples
      3. 9.3 CNT-Based Electrochemical Biosensors
        1. 9.3.1 Oxidation of Dopamine
        2. 9.3.2 Direct Electrochemistry or Electrocatalysis of Catalase
        3. 9.3.3 CNT-Based Electrochemical DNA Biosensor
        4. 9.3.4 Glucose Biosensor
        5. 9.3.5 Cholesterol Biosensor
        6. 9.3.6 H2O2 Biosensor
      4. 9.4 Functionalization of CNTs for Biosensor Fabrication
      5. 9.5 QD (Quantum Dot)-Based Electrochemical Biosensors
        1. 9.5.1 Uric Acid Biosensor
        2. 9.5.2 Hydrogen Peroxide Biosensor
        3. 9.5.3 CdS Nanoparticles Modified Electrode for Glucose Detection
        4. 9.5.4 QD Light-Triggered Glucose Detection
      6. 9.6 Nanotube and Nanowire-Based FET Nanobiosensors
        1. 9.6.1 Nanotube versus Nanowire
        2. 9.6.2 Functionalization of SiNWs
        3. 9.6.3 DNA and Protein Detection
      7. 9.7 Cantilever-Based Nanobiosensors
        1. 9.7.1 Biofunctionalization of the Microcantilever Surface
        2. 9.7.2 Biosensing Applications
      8. 9.8 Optical Nanobiosensors
        1. 9.8.1 Aptamers
        2. 9.8.2 Aptamer-Modified Au Nanoparticles as a Colorimetric Adenosine Nanosensor
        3. 9.8.3 Aptamer-Based Multicolor Fluorescent Gold Nanoprobe for Simultaneous Adenosine, Potassium Ion, and Cocaine Detection
        4. 9.8.4 Aptamer-Capped QD as a Thrombin Nanosensor
        5. 9.8.5 QD Aptameric Cocaine Nanosensor
      9. 9.9 Biochips (or Microarrays)
      10. 9.10 Discussion and Conclusions
      11. Review Exercises
      12. References
  19. Part V Emerging Applications of Nanosensors
    1. 10. Nanosensors for Societal Benefits
      1. 10.1 Air Pollutants
      2. 10.2 Nanosensors for Particulate Matter Detection
        1. 10.2.1 Cantilever-Based Airborne Nanoparticle Detector (CANTOR)
        2. 10.2.2 Nanomechanical Resonant Filter-Fiber
        3. 10.2.3 Aerosol Sensing by Voltage Modulation
        4. 10.2.4 MEMS-Based Particle Detection System
      3. 10.3 Nanosensors for Carbon Monoxide Detection
        1. 10.3.1 Au Nanoparticle-Based Miniature CO Detector
        2. 10.3.2 CuO Nanowire Sensor on Micro-Hotplate
        3. 10.3.3 ZnO Nanowall-Based Conductometric Sensor
        4. 10.3.4 ZnO NPs-Loaded 3D Reduced Graphene Oxide (ZnO/3D-rGO) Sensor
        5. 10.3.5 Europium-Doped Cerium Oxide Nanoparticles Thick-Film Sensor
        6. 10.3.6 Pt-decorated SnO2 Nanoparticles Sensor
      4. 10.4 Nanosensors for Sulfur Dioxide Detection
        1. 10.4.1 Tungsten Oxide Nanostructures-Based Sensor
        2. 10.4.2 SnO2 Thin-Film Sensor with Nanoclusters of Metal Oxide Modifiers/Catalysts
        3. 10.4.3 Fluorescence Nanoprobe
        4. 10.4.4 Niobium-Loaded Tungsten Oxide Film Sensor
        5. 10.4.5 Nickel Nanowall-Based Sensor
      5. 10.5 Nanosensors for Nitrogen Dioxide Detection
        1. 10.5.1 SnO2 Nanoribbon Sensor
        2. 10.5.2 Tris(hydroxymethyl) Aminomethane (THMA)-Capped ZnO Nanoparticle-Coated ZnO Nanowire Sensor
        3. 10.5.3 In2O3-Sensitized CuO-ZnO Nanoparticle Composite Film Sensor
        4. 10.5.4 UV-Activated, Pt-Decorated Single-Crystal ZnO Nanowire Sensor
      6. 10.6 Nanosensors for Ozone Detection
        1. 10.6.1 SnO2/SWCNT Hybrid Thin-Film Sensor
        2. 10.6.2 Nanocrystalline SrTi1-xFexO3 (STF) Thin-Film Sensor
        3. 10.6.3 ZnO Nanoparticle Sensor
        4. 10.6.4 Pd-Decorated MWCNT Sensor
        5. 10.6.5 UV-Illuminated ZnO Nanocrystal Sensor
      7. 10.7 Nanosensors for VOC Detection
        1. 10.7.1 Chemiresistive Sensor Using Gold Nanoparticles
        2. 10.7.2 Metal-Organic Framework (MOF) Nanoparticle-Based Capacitive Sensor
        3. 10.7.3 Al-Doped ZnO Nanowire {(ZnO:Al)NW}Sensor
        4. 10.7.4 Nickel-Doped Tin Oxide Nanoparticle (Ni-SnO2 NP) Sensor for Formaldehyde
        5. 10.7.5 Palladium Nanoparticle (PdNP)/Nickel Oxide (NiO) Thin- Film/Palladium (Pd) Thin-Film Sensor for Formaldehyde
        6. 10.7.6 Surface Acoustic Wave (SAW) Sensor With Polymer-Sensitive Film Containing Embedded Nanoparticles
        7. 10.7.7 Resorcinol-Functionalized Gold Nanoparticle Colorimetric Probe for Formaldehyde Detection
      8. 10.8 Nanosensors for Ammonia Detection
        1. 10.8.1 Polyaniline Nanoparticle Conductimetric Sensor
        2. 10.8.2 MoO3 Nanoparticle Gel-Coated Sensor
        3. 10.8.3 ZnO:Eu2+ Fluorescence Quenching Nanoparticle-Based Optical Sensor
        4. 10.8.4 Pt Nanoparticle (Pt NP)-Decorated WO3 Sensor
      9. 10.9 Water Pollutants
      10. 10.10 Nanosensors for Detection of Escherichia coli 0157:H7
        1. 10.10.1 Magnetoelastic Sensor Amplified With Chitosan-Modified Fe3O4 Magnetic Nanoparticles (CMNPs)
        2. 10.10.2 Mercaptoethylamine (MEA)-Modified Gold Nanoparticle Sensor
        3. 10.10.3 Cysteine-Capped Gold Nanoparticle Sensor
        4. 10.10.4 Three Nanoparticles-Based Biosensor (Iron Oxide, Gold, and Lead Sulfide)
        5. 10.10.5 Magneto-Fluorescent Nanosensor (MfnS)
        6. 10.10.6 Signal-Off Impedimetric Nanosensor With a Sensitivity Enhancement by Captured Nanoparticles
        7. 10.10.7 An Impedimetric Biosensor for E. coli O157:H7 Based on the Use of Self-Assembled Gold Nanoparticles (AuNPs) and Protein G-Thiol (PrG-Thiol) Scaffold
        8. 10.10.8 Gold Nanoparticles Surface Plasmon Resonance (AuNP SPR) Chip
        9. 10.10.9 Microfluidic Nanosensor Working on Aggregation of Gold Nanoparticles and Imaging by Smartphone
      11. 10.11 Nanosensors for Detection of Vibrio cholerae and Cholera Toxin
        1. 10.11.1 Lactose-Stabilized Gold Nanoparticles
        2. 10.11.2 ssDNA/Nanostructured MgO (nMgO)/Indium Tin Oxide (ITO) Bioelectrode
        3. 10.11.3 Nanostructured MgO (nMgO) Photoluminescence Sensor
        4. 10.11.4 Lyophilized Gold Nanoparticle/Polystyrene-Co-Acrylic Acid-Based Genosensor
        5. 10.11.5 Polystyrene-co-Acrylic Acid (PSA) Latex Nanospheres
        6. 10.11.6 Graphene Nanosheet Bioelectrode with Lipid Film Containing Ganglioside GM1 Receptor of Cholera Toxin
      12. 10.12 Nanosensors for Detection of Pseudomonas aeruginosa
        1. 10.12.1 Probe-Modified Magnetic Nanoparticles-Based Chemiluminescent Sensor
        2. 10.12.2 Reduced Graphene Electrode Decorated with Gold Nanoparticles (AuNPs)
        3. 10.12.3 Polyaniline(PANI)/Gold Nanoparticle (AuNP) Decorated Indium Tin Oxide (ITO) Electrode
      13. 10.13 Nanosensors for Detection of Legionella pneumophila
        1. 10.13.1 ZnO Nanorod (ZnO-NR) Matrix-Based Immunosensor
        2. 10.13.2 Azimuthally-Controlled Gold Grating-Coupling Surface Plasmon Resonance (GC-SPR) Platform
      14. 10.14 Nanosensors for Detection of Mercury Ions
        1. 10.14.1 Thymine Derivative (N-T) Decorated Gold Nanoparticle Sensor
        2. 10.14.2 Smartphone-Based Microwell Reader (MR S-phone) AuNP-Aptamer Colorimetric Sensor
        3. 10.14.3 Starch-Stabilized Silver Nanoparticle-Based Colorimetric Sensor
        4. 10.14.4 Chitosan-Stabilized Silver Nanoparticle (Chi-AgNP)-Based Colorimetric Sensor
      15. 10.15 Nanosensors for Detection of Lead Ions
        1. 10.15.1 Glutathione (GSH)-Stabilized Silver Nanoparticle (AgNP) Sensor
        2. 10.15.2 Maleic acid (MA)-Functionalized Gold Nanoparticle (AuNP) Sensor
        3. 10.15.3 Label-Free Gold Nanoparticles (AuNPs) in the Presence of Glutathione (GSH)
        4. 10.15.4 Gold Nanoparticles (AuNPs) Conjugated with Thioctic Acid (TA) and Fluorescent Dansyl Hydrazine (DNS) Molecules
        5. 10.15.5 Valine-Capped Gold Nanoparticle Sensor
        6. 10.15.6 Polyvinyl Alcohol (PVA)-Stabilized Colloidal Silver Nanoparticles (Ag NPs) in the Presence of Dithizone
        7. 10.15.7 Gold Nanoparticle (AuNP)-Graphene (GR)-Modified Glassy Carbon Electrode (GCE)
      16. 10.16 Nanosensors for Detection of As(III) ions
        1. 10.16.1 Portable Surface-Enhanced Raman Spectroscopy (SERS) System
        2. 10.16.2 Surface Plasmon Resonance (SPR) Nanosensor
        3. 10.16.3 FePt Bimetallic Nanoparticle (FePt-NP) Sensor
        4. 10.16.4 Gold Nanoparticles (AuNPs)-Modified Glassy Carbon Electrode (GCE) for Co-Detection of As(III) and Se(IV)
        5. 10.16.5 Silver Nanoparticle-Modified Gold Electrode
        6. 10.16.6 Carbon Nanoparticle (CNP)/Gold Nanoparticle (AuNP)-Modified Glassy Carbon Electrode (GCE) Aptasensor
        7. 10.16.7 Gold Nanostructured Electrode on a Gold Foil (Au/GNE)
        8. 10.16.8 Bimetallic Nanoparticle (NP) and [Bimetallic NP + Polyaniline (PANI)] Composite-Modified Screen-Printed Carbon Electrode (SPCE)
        9. 10.16.9 Ranolazine (Rano)-Functionalized Copper Nanoparticles (CuNPs)
      17. 10.17 Nanosensors for Detection of Cr(VI) Ions
        1. 10.17.1 Colloidal Gold Nanoparticle (AuNP) Probe-Based Immunochromatographic Sensor
        2. 10.17.2 Amyloid-Fibril-Based Sensor
        3. 10.17.3 Gold Nanoparticle (AuNP)-Decorated Titanium Dioxide Nanotubes (TiO2NTs) on a Ti Substrate
      18. 10.18 Nanosensors for Detection of Cd2+ ions
        1. 10.18.1 Gold Nanoparticle Amalgam (AuNPA)-Modified Screen-Printed Electrode (SPE)
        2. 10.18.2 Turn-On Surface-Enhanced Raman Scattering (SERS) Sensor
        3. 10.18.3 Thioglycerol (TG)-Capped CdSe Quantum Dots (QDs)
        4. 10.18.4 CdTe Quantum (CdTe QD) Dot-Based Hybrid Probe
        5. 10.18.5 Aptamer-Functionalized Gold Nanoparticle (AuNP) Sensor
      19. 10.19 Nanosensors for Detection of Cu2+ ions
        1. 10.19.1 Azide and Terminal Alkyne-Functionalized Gold Nanoparticle (AuNP) Sensor
        2. 10.19.2 Cadmium Sulfide Nanoparticle (CdS NP)-Gold Quantum Dot (Au QD) Sensor
        3. 10.19.3 Multiple Antibiotic Resistance Regulator (MarR)-Functionalized Gold Nanoparticle (AuNP) Sensor
        4. 10.19.4 Casein Peptide-Functionalized Silver Nanoparticle (AgNP) Sensor
      20. 10.20 Nanosensors for Detection of Pesticides
        1. 10.20.1 DDT (Dichlorodiphenyltrichloroethane)
        2. 10.20.2 2,4-Dichlorophenoxyacetic Acid (2,4-D)
        3. 10.20.3 Carbofuran (CBF)
          1. 10.20.3.1 Amperometric Immunosensor
          2. 10.20.3.2 Molecularly Imprinted Polymer (MIP)-Reduced Graphene Oxide and Gold Nanoparticle (rGO@AuNP)-Modified Glassy Carbon Electrode (GCE)
          3. 10.20.3.3 Gold Nanoparticle (AuNP)-Based Surface Enhanced Raman Spectroscopy (SERS)
        4. 10.20.4 Methomyl
        5. 10.20.5 Dimethoate
        6. 10.20.6 Atrazine
          1. 10.20.6.1 Gold Nanoparticle (AuNP)-Modified Gold (Au) Electrode
          2. 10.20.6.2 Cysteamine (Cys)-Functionalized Gold Nanoparticles (AuNPs)
          3. 10.20.6.3 Nitrogen-Doped Carbon Quantum Dot-Based Luminescent Probe
        7. 10.20.7 Paraoxon-Ethyl
        8. 10.20.8 Acetamiprid
        9. 10.20.9 Hexachlorobenzene (HCB), Perchlorobenzene
        10. 10.20.10 Malathion (MLT): Diethyl 2-[(dimethoxyphosphorothioyl)sulfanyl]butanedioate
        11. 10.20.11 Dithiocarbamate (DTC) Pesticide Group
      21. 10.21 Discussion and Conclusions
        1. 10.21.1 Particulate Matter
        2. 10.21.2 Gases
        3. 10.21.3 Pathogens
        4. 10.21.4 Metals
        5. 10.21.5 Pesticides
      22. Review Exercises
      23. References
    2. 11. Nanosensors for Industrial Applications
      1. 11.1 Nanosensors for Detection of Food-Borne Pathogenic Bacteria
        1. 11.1.1 Salmonella typhimurium
          1. 11.1.1.1 DNA Aptamers and Magnetic Nanoparticle (MNP)-Based Colorimetric Sensor
          2. 11.1.1.2 Strip Sensor Using Gold Nanoparticle (AuNP)-Labeled Genus-Specific Anti-Lipopolysaccharide (LPS) Monoclonal Antibody (mAb)
        2. 11.1.2 Clostridium perfringens
        3. 11.1.3 Listeria monocytogenes
          1. 11.1.3.1 Immunomagnetic Nanoparticles (IMNPs) with Microfluidic Chip and Interdigitated Microelectrodes
          2. 11.1.3.2 Gold Nanoparticle (AuNP)/DNA Colorimetric Probe Assay
        4. 11.1.4 Campylobacter jejuni
        5. 11.1.5 Yersinia enterocolitica
      2. 11.2 Nanosensors for Detection of Food-Borne Toxins
        1. 11.2.1 Botulinum Neurotoxin Serotype A (BoNT/A)
          1. 11.2.1.1 Gold Nanodendrite (AuND)/Chitosan Nanoparticle (CSNP)-Modified Screen-Printed Carbon Electrode (SPCE) for Botulinum Neurotoxin Serotype A (BoNT/A)
          2. 11.2.1.2 Peptide-Functionalized Gold Nanoparticles (AuNPs)-Based Colorimetric Assay for Botulinum Serotype A Light Chain (BoLcA)
        2. 11.2.2 Staphylococcal Enterotoxin B (SEB)
      3. 11.3 Nanosensors for Cancer Cell/Biomarker Detection
        1. 11.3.1 Breast Cancer Cell MCF-7
        2. 11.3.2 HER2, A Medical Sign of Breast Cancer
        3. 11.3.3 Serum Amyloid A1 (SAA1) Antigen, a Lung-Cancer-Specific Biomarker
        4. 11.3.4 Prostate-Specific Antigen (PSA), a Biomarker for Prostate Cancer
        5. 11.3.5 miRNA-106a, the Biomarker of Gastric Cancer
        6. 11.3.6 Colorectal Carcinoma Cell
        7. 11.3.7 Cluster of Differentiation 10 (CD10) Antigen, the Common Acute Lymphoblastic Leukemia Antigen
      4. 11.4 Nanosensors for Detection of Infectious Disease Indicators
        1. 11.4.1 IgG Antibodies to Hepatitis B Surface Antigen (α-HbsAg IgG Antibodies)
        2. 11.4.2 Dengue-1 RNA
        3. 11.4.3 Japanese Encaphilitis Virus (JEV) Antigen
        4. 11.4.4 HIV-1 p24 Antigen
        5. 11.4.5 Zika Virus (ZIKV)
        6. 11.4.6 Severe Acute Respiratory Syndrome Coronavirus 2
        7. 11.4.7 Pneumococcus or Streptococcus pneumoniae
        8. 11.4.8 Acid-Fast Bacilli (AFB)
        9. 11.4.9 Streptococcus pyogenes Single-Stranded Genomic-DNA (S. pyogenes ssg-DNA)
        10. 11.4.10 Plasmodium falciparum Heat-Shock Protein 70 (PfHsp70)
      5. 11.5 Nanosensors for Automotive, Aerospace, and Consumer Applications
        1. 11.5.1 Strain/Pressure Sensors
          1. 11.5.1.1 Polymer-Metallic Nanoparticles Composite Pressure Sensor
          2. 11.5.1.2 Percolative Pd Nanoparticle (PdNP) Array-Based Pressure Sensor
          3. 11.5.1.3 Silver Nanoparticle (AgNP)/Polydimethylsiloxane (PDMS) Strain/Pressure Sensor
          4. 11.5.1.4 Polyacrylamide (PAAm)/Gold nanoparticle (AuNP) Pressure Sensor
        2. 11.5.2 Acoustic Vibration Sensor
        3. 11.5.3 Acceleration Sensor
        4. 11.5.4 Orientation, Angular Rate, or Angle Sensors
          1. 11.5.4.1 CNT Field-Emission Nano Gyroscope
          2. 11.5.4.2 Magnetic Nanoparticles-Based Gyroscopic Sensor
        5. 11.5.5 Ultrasound Sensor
        6. 11.5.6 Magnetic Field Sensor
          1. 11.5.6.1 Nanoparticle Core-Based Fluxgate Magnetometer
          2. 11.5.6.2 Magnetic Nanoparticle (MNP)-Functionalized Magnetometer
      6. 11.6 Discussion and Conclusions
        1. 11.6.1 Pathogens
        2. 11.6.2 Toxins
        3. 11.6.3 Cancer
        4. 11.6.4 Infectious Diseases
        5. 11.6.5 Automotive, Aerospace, and Consumer Applications
      7. Review Exercises
      8. References
    3. 12. Nanosensors for Homeland Security
      1. 12.1 Necessity of Nanosensors for Trace Explosive Detection
      2. 12.2 2,4,6-Trinitrotoluene (TNT) Nanosensors
        1. 12.2.1 Curcumin Nanomaterials Surface Energy Transfer (NSET) Probe
        2. 12.2.2 Amine-Functionalized Silica Nanoparticles (SiO2-NH2) Colorimetric Sensor
        3. 12.2.3 Amine-Modified Gold@Silver Nanoparticles-Based Colorimetric Paper Sensor
        4. 12.2.4 Polyethylenimine (PEI)-Capped Downconverting β-NaYF4:Gd3+,Tb3+@PEI Nanophosphor Luminescence Sensor
        5. 12.2.5 Janus Amine-Modified Upconverting NaYF4:Yb3+/Er3+ Nanoparticle (UCNP) Micromotor-Based On-Off Luminescence Sensor
        6. 12.2.6 AgInS2 (AIS) Quantum Dot (QD) Fluorometric Probe
        7. 12.2.7 TNT Recognition Peptide Single-Walled Carbon Nanotubes (SWCNTs) Hybrid Anchored Surface Plasmon Resonance (SPR) Chip
        8. 12.2.8 Non-Imprinted and Molecularly Imprinted Bis-Aniline–Cross-Linked Gold Nanoparticles (AuNPs) Composite/Gold Layer for Surface Plasmon Resonance, and Related Sensors
      3. 12.3 TNT/Tetryl (Tetranitro-N-methylamine) Nanosensors
        1. 12.3.1 Diaminocyclohexane (DACH)-Functionalized/Thioglycolic Acid (TGA)-Modified Gold Nanoparticle Colorimetric Sensor for TNT/Tetryl
        2. 12.3.2 Cetyl Trimethyl Ammonium Bromide (CTAB) Surfactant Stabilized/Diethyldithiocarbamate-Functionalized Gold Nanoparticle Colorimetric Sensor for TNT/Tetryl
      4. 12.4 Picric Acid Nanosensors
        1. 12.4.1 Zinc Oxide (ZnO) Nanopeanuts–Modified Screen-Printed Electrode (SPE)
        2. 12.4.2 Nanostructured Cuprous Oxide (Cu2O)-Coated Screen-Printed Electrode
        3. 12.4.3 β-Cyclodextrin-Functionalized Reduced Graphene Oxide (rGO) Sensor
        4. 12.4.4 Conjugated Polymer Nanoparticles (CPNPs) Fluorescence/Current Response Sensor
        5. 12.4.5 Surface-Enhanced Raman Scattering (SERS) Using Hydrophobic Silver Nanopillar Substrates
      5. 12.5 Nanosensors for 1,3,5-Trinitro-1,3,5-Triazacyclohexane (RDX) and Other Explosives
        1. 12.5.1 Gold Nanoparticles Substrate for RDX (Cyclotrimethylenetrinitramine) Detection by SERS
        2. 12.5.2 4-Aminothiophenol (4-ATP)-Functionalized Gold Nanoparticle Colorimetric Sensor for RDX (Cyclotrimethylenetrinitramine)/HMX (Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine)
        3. 12.5.3 Cadmium Sulfide-Diphenylamine (CdS QD-DPA) FRET-Based Fluorescence Sensor for RDX (Cyclotrimethylenetrinitramine)/PETN (Pentaerythritol Tetranitrate)
        4. 12.5.4 Gold Nanoparticles/Nitroenergetic Memory-Poly(Carbazole-Aniline) P(Cz-co-ANI) Film-Modified Glassy Carbon Electrode (GCE) for RDX (Cyclotrimethylenetrinitramine), TNT (2,4,6-Trinitrotoluene), DNT (2,4-Dinitrotoluene), and HMX (Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine) Detection
      6. 12.6 Nanosensor Requirements for Detection of Biothreat Agents
      7. 12.7 Anthrax Spore Nanosensors
        1. 12.7.1 Europium Nanoparticle (Eu+ NP) Fluorescence Immunoassay (ENIA) for Bacillus anthracis Protective Antigen
        2. 12.7.2 Gold Nanoparticle–Amplified DNA Probe-Functionalized Quartz Crystal Microbalance (QCM) Biosensor for B. Anthracis at Gene Level
      8. 12.8 Rapid Screening Lateral Flow Plague Bacterium (Yersinia pestis) Nanosensor
      9. 12.9 Francisella tularensis Bacterium Nanosensors
        1. 12.9.1 Gold Nanoparticle Signal Enhancement–Based Quartz Crystal Microbalance Biosensor and Gold Nanoparticle Absorbance Biosensor
        2. 12.9.2 Detection Antibody and Quantum Dots Decorated Apoferritin Nanoprobe
      10. 12.10 Brucellosis Bacterium (Brucella) Nanosensors
        1. 12.10.1 Gold Nanoparticle–Modified Disposable Screen-Printed Carbon Electrode (SPCE) Immunosensor for Brucella melitensis
        2. 12.10.2 Oligonucleotide-Activated Gold Nanoparticle (Oligo-AuNP) Colorimetric Probe for Brucella Abortus
        3. 12.10.3 Colored Silica Nanoparticles Colorimetric Immunoassay for Brucella abortus
      11. 12.11 Oligonucleotide/Gold Nanoparticles/Magnetic Beads–Based Smallpox Virus (Variola) Colorimetric Sensor
      12. 12.12 Ebola Virus (EBOV) Nanosensors
        1. 12.12.1 Reduced Graphene Oxide–Based Field Effect Transistor (FET)
        2. 12.12.2 Bio-Memristor for Ebola VP40 Matrix Protein Detection
        3. 12.12.3 3-D Plasmonic Nanoantenna Sensor
      13. 12.13 Ricin Toxin Nanosensors
        1. 12.13.1 Silver Enhancement Immunoassay with Interdigitated Array Microelectrodes (IDAMs)
        2. 12.13.2 Modified Bio-Barcode Assay (BCA)
        3. 12.13.3 Electroluminescence Immunosensor
      14. 12.14 Staphylococcal Enterotoxin B (SEB) Toxin Nanosensors
        1. 12.14.1 SEB Detection Through Hydrogen Evolution Inhibition by Enzymatic Deposition of Metallic Copper on Platinum Nanoparticles (PtNPs)-Modified Glassy Carbon Electrode
        2. 12.14.2 4-Nitrothiophenol (4-NTP)-Encoded Gold Nanoparticle Core/Silver Shell (AuNP@Ag)-Based SERS Immunosensor
        3. 12.14.3 Aptamer Recognition Element and Gold Nanoparticle Color Indicator–Based Assay
      15. 12.15 Aflatoxin Nanosensors
        1. 12.15.1 Polyaniline (PANI) Nanofibers–Gold Nanoparticles Composite–Based Indium Tin Oxide (ITO) Disk Electrode for AFB1
        2. 12.15.2 Gold Nanodots (AuNDs)/Reduced Graphene Oxide Nanosheets/Indium Tin Oxide Substrate for Raman Spectroscopy and Electrochemical Measurements for AFB1
        3. 12.15.3 AFM1 Aptamer–Triggered and DNA-Fueled Signal-On Fluorescence Sensor for AFM1
      16. 12.16 Discussion and Conclusions
        1. 12.16.1 Nanosensors for Explosives
          1. 12.16.1.1 TNT
          2. 12.16.1.2 TNT:Tetryl
          3. 12.16.1.3 Picric Acid
          4. 12.16.1.4 RDX/Other Explosives
        2. 12.16.2 Nanosensors for Biothreat Agents
      17. Review Exercises
      18. References
  20. Part VI Powering, Networking, and Trends of Nanosensors
    1. 13. Nanogenerators and Self-Powered Nanosensors
      1. 13.1 Devising Ways to Get Rid of Environment-Devastating Batteries
        1. 13.1.1 Vibration: The Abundant Energy Source in the Environment
        2. 13.1.2 Phenomena for Harvesting Vibrational Energy: Tribo- and Piezoelectricity
        3. 13.1.3 Role of Nanotechnology in Energy Harvesting
        4. 13.1.4 Other Energy Sources: Do Not Overlook Light and Heat!
      2. 13.2 Output Current of Tribo/Piezoelectric Nanogenerators as the Outcome of Second Term in Maxwell’s Displacement Current
        1. 13.2.1 Principle of TENG
        2. 13.2.2 Principle of PENG
      3. 13.3 Triboelectricity-Powered Nanosensors
        1. 13.3.1 TENG Made From Micropatterned Polydimethylsiloxane (PDMS) Membrane/Ag Nanoparticles and Ag Nanowires Composite Covered Aluminum Foil as a Static/Dynamic Pressure Nanosensor
        2. 13.3.2 Electrolytic Solution/Fluorinated Ethylene Propylene (FEP) Film TENG Nanosensor for pH Measurement
        3. 13.3.3 Ethanol Nanosensor Using Dual-Mode TENG: Water/TiO2 Nanomaterial TENG and SiO2 Nanoparticles (SiO2 NPs)/Polytetrafluoroethylene (PTFE) TENG
        4. 13.3.4 Dopamine Nanosensor Using Al/PTFE with Nanoparticle Array TENG
        5. 13.3.5 Mercury Ion Nanosensor Using Au Film with Au Nanoparticles/PDMS TENG
      4. 13.4 Piezoelectricity-Powered Nanosensors
        1. 13.4.1 ZnO Nanowire PENG as a Pressure/Speed Nanosensor
        2. 13.4.2 UV and pH Nanosensors with ZnO Nanowire PENG
        3. 13.4.3 CNT Hg2+ Ion Nanosensor with ZnO Nanowire PENG
        4. 13.4.4 Smelling Electronic Skin (e-Skin) with ZnO Nanowire PENG
      5. 13.5 Miscellaneous Powered Nanosensors
        1. 13.5.1 Photovoltaic Effect-Powered H2S Nanosensor Using P-SWCNTs/N-Si Heterojunction
        2. 13.5.2 Thermoelectricity-Powered Temperature Nanosensor Using Ag2Te Nanowires/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) (PEDOT:PSS) Composite
      6. 13.6 Discussion and Conclusions
      7. Review Exercises
      8. References
    2. 14. Wireless Nanosensor Networks and IoNT
      1. 14.1 Evolution of Wireless Nanosensor Concept
      2. 14.2 Promising Communication Approaches for Nanonetworking
      3. 14.3 Molecular Communication (MC)
        1. 14.3.1 A Common Natural Phenomenon
        2. 14.3.2 Steps in Molecular Communication
        3. 14.3.3 Advantages of MC
        4. 14.3.4 Difficulties of MC
      4. 14.4 Electromagnetic Communication (EMC)
      5. 14.5 Envisaged Electromagnetic Integrated Nanosensor Module
        1. 14.5.1 Nanosensor Unit
        2. 14.5.2 Nanoactuation Unit
        3. 14.5.3 Power Unit
        4. 14.5.4 Nanoprocessor Unit
        5. 14.5.5 Nanomemory Unit
        6. 14.5.6 Nanoantenna
        7. 14.5.7 Nano Transceiver
        8. 14.5.8 Alternative Nanotube Electromechanical Nano Transceiver
      6. 14.6 WNNs Formation Using EMC Nanosensor Modules: The WNN Architecture
      7. 14.7 Frequency Bands of Electromagnetic WNN Operation
        1. 14.7.1 THz Channel Model for Intrabody WNNs
        2. 14.7.2 Channel Capacity for WNNs
        3. 14.7.3 Multi-Path Fading
      8. 14.8 Modulation Techniques for Electromagnetic WNNs
        1. 14.8.1 Time Spread On-Off Keying (TS-OOK) Modulation Scheme
        2. 14.8.2 Symbol Rate Hopping (SRH)-TSOOK Modulation Scheme
      9. 14.9 Channel Sharing Protocol in WNN
      10. 14.10 Information Routing in WNNs
        1. 14.10.1 Multi-Hop Routing
        2. 14.10.2 Sensing-Aware Information Routing: The Cross-Layer Protocol
      11. 14.11 Failure Mechanisms and Reliability Issues of WNNs
      12. 14.12 Internet of Nano Things (IoNT): The Nanomachine
      13. 14.13 Discussion and Conclusions
      14. Review Exercises
      15. References
    3. 15. Overview and Future Trends of Nanosensors
      1. 15.1 Introduction
        1. 15.1.1 Interfacing Nanosensors with Human Beings
        2. 15.1.2 Three Main Types of Nanosensors
        3. 15.1.3 Using the Response Properties of the Same Nanomaterial in Different Types of Nanosensors
        4. 15.1.4 Nanosensor Science, Engineering, and Technology: Three Interrelated Disciplines
        5. 15.1.5 Scope of the Chapter
      2. 15.2 Scanning Tunneling Microscope
      3. 15.3 Atomic Force Microscope
      4. 15.4 Mechanical Nanosensors
      5. 15.5 Thermal Nanosensors
      6. 15.6 Optical Nanosensors
      7. 15.7 Magnetic Nanosensors
      8. 15.8 Chemical Nanosensors
      9. 15.9 Nanobiosensors
      10. 15.10 Nanosensor Fabrication Aspects
      11. 15.11 In Vivo Nanosensor Problems
      12. 15.12 Molecularly Imprinted Polymers for Biosensors
      13. 15.13 Applications Perspectives of Nanosensors
        1. 15.13.1 Nanosensors for Societal Benefits
        2. 15.13.2 Nanosensors for Industrial Applications
        3. 15.13.3 Nanosensors for Homeland Security
      14. 15.14 Interfacing Issues for Nanosensors: Power Consumption and Sample Delivery Problems
      15. 15.15 Depletion-Mediated Piezoelectric Actuation for NEMS
      16. 15.16 Batteryless Nanosensors
      17. 15.17 Networking Nanosensors Wirelessly
      18. 15.18 Discussion and Conclusions
      19. Review Exercises
      20. References
  21. Index

Product information

  • Title: Nanosensors, 2nd Edition
  • Author(s): Vinod Kumar Khanna
  • Release date: February 2021
  • Publisher(s): CRC Press
  • ISBN: 9781000331356