References
- Armstrong, M.A. (1988) Groups and Symmetry, Springer‐Verlag, New York, NY.
- Barrett, H.H. and Myers, K.J. (2004) Foundations of Image Science, Wiley‐Interscience, Hoboken, NJ.
- Bracewell, R.N. (2000) The Fourier Transform and its Applications, McGraw Hill, Boston, MA, 3rd edn.
- Brandolini, L., Colzani, L., and Travaglini, G. (1997) Average decay of Fourier transforms and integer points in polyhedra. Ark. Mat., 35, 253–275.
- Brillinger, D.R. (2001) Time Series: Data Analysis and Theory, SIAM, Philadelphia, PA.
- Brown, H., Bülow, R., Neubüser, J., Wondratschek, H., and Zassenhaus, H. (1978) Crystallographic Groups of Four‐Dimensional Space, Wiley, New York, NY.
- Cariolaro, G. (2011) Unified Signal Theory, Springer, London.
- Cassels, J.W.S. (1997) An Introduction to the Geometry of Numbers, Springer‐Verlag, Berlin.
- Cohen, H. (1993) A Course in Computational Algebraic Number Theory, Springer‐Verlag, Berlin.
- Cortelazzo, G. and Manduchi, R. (1993) On the determination of all the sublattices of preassigned index and its application to multidimensional sampling. IEEE Trans. Circuits Syst. Video Technol., 3 (4), 318–320.
- Coulombe, S. and Dubois, E. (1999) Nonuniform perfect reconsruction filter banks over lattices with application to transmultiplexers. IEEE Trans. Image Process., 47 (4), 1010–1023.
- Do, M.N. and Lu, Y.M. (2011) Multidimensional filter banks and multiscale geometric representations. Foundations and Trends in Signal Processing, 5 (3), 157–264.
- Dubois, E. (1985) The sampling ...
Get Multidimensional Signal and Color Image Processing Using Lattices now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.