Chapter 1. Introduction
When I was 12, my brother and I studied piano. Each week we would make a trip to our teacher’s house; while one of us had our lesson, the other would wait in her parlor. Fortunately, she always had a few games arranged on a coffee table to help us pass the time while waiting. One game I remember consisted of a series of pegs on a small piece of wood. Little did I know it, but the game would prove to be an early introduction to data structures and algorithms.
The game was played as follows. All of the pegs were white, except for one, which was blue. To begin, one of the white pegs was removed to create an empty hole. Then, by jumping pegs and removing them much like in checkers, the game continued until a single peg was left, or the remaining pegs were scattered about the board in such a way that no more jumps could be made. The object of the game was to jump pegs so that the blue peg would end up as the last peg and in the center. According to the game’s legend, this qualified the player as a “genius.” Additional levels of intellect were prescribed for other outcomes. As for me, I felt satisfied just getting through a game without our teacher’s kitten, Clara, pouncing unexpectedly from around the sofa to sink her claws into my right shoe. I suppose being satisfied with this outcome indicated that I simply possessed “common sense.”
I remember playing the game thinking that certainly a deterministic approach could be found to get the blue peg to end up in the center every time. What I was looking for was an algorithm. Algorithms are well-defined procedures for solving problems. It was not until a number of years later that I actually implemented an algorithm for solving the peg problem. I decided to solve it in LISP during an artificial intelligence class in college. To solve the problem, I represented information about the game in various data structures. Data structures are conceptual organizations of information. They go hand in hand with algorithms because many algorithms rely on them for efficiency.
Often, people deal with information in fairly loose forms, such as pegs on a board, notes in a notebook, or drawings in a portfolio. However, to process information with a computer, the information needs to be more formally organized. In addition, it is helpful to have a precise plan for exactly what to do with it. Data structures and algorithms help us with this. Simply stated, they help us develop programs that are, in a word, elegant. As developers of software, it is important to remember that we must be more than just proficient with programming languages and development tools; developing elegant software is a matter of craftsmanship. A good understanding of data structures and algorithms is an important part of becoming such a craftsman.
Get Mastering Algorithms with C now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.