PREFACE

An unprecedented amount of data is being generated at increasingly rapid rates in many disciplines. Every day retail companies collect data on sales transactions, organizations log mouse clicks made on their websites, and biologists generate millions of pieces of information related to genes. It is practically impossible to make sense of data sets containing more than a handful of data points without the help of computer programs. Many free and commercial software programs exist to sift through data, such as spreadsheet applications, data visualization software, statistical packages and scripting languages, and data mining tools. Deciding what software to use is just one of the many questions that must be considered in exploratory data analysis or data mining projects. Translating the raw data collected in various ways into actionable information requires an understanding of exploratory data analysis and data mining methods and often an appreciation of the subject matter, business processes, software deployment, project management methods, change management issues, and so on.

The purpose of this book is to describe a practical approach for making sense out of data. A step-by-step process is introduced, which is designed to walk you through the steps and issues that you will face in data analysis or data mining projects. It covers the more common tasks relating to the analysis of data including (1) how to prepare data prior to analysis, (2) how to generate summaries ...

Get Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, 2nd Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.