1.7* Maximal Linearly Independent Subsets
In this section, several significant results from Section 1.6 are extended to infinite-dimensional vector spaces. Our principal goal here is to prove that every vector space has a basis. This result is important in the study of infinite-dimensional vector spaces because it is often difficult to construct an explicit basis for such a space. Consider, for example, the vector space of real numbers over the field of rational numbers. There is no obvious way to construct a basis for this space, and yet it follows from the results of this section that such a basis does exist.
The difficulty that arises in extending the theorems of the preceding section to infinite-dimensional vector spaces is that the principle ...
Get Linear Algebra, 5th Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.