Kinematics and Dynamics of Mechanical Systems, 3rd Edition

Book description

Updated throughout for the third edition, Kinematics and Dynamics of Mechanical Systems: Implementation in MATLAB® and Simscape Multibody™ offers step-by-step instruction on the fundamentals of mechanism kinematics, synthesis, statics and dynamics, alongside demonstrating its real-world applications.

Table of contents

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright Page
  5. Dedication Page
  6. Table of Contents
  7. Preface
  8. Authors
  9. 1. Introduction to Kinematics
    1. 1.1 Kinematics
    2. 1.2 Kinematic Chains and Mechanisms
    3. 1.3 Mobility, Planar, and Spatial Mechanisms
    4. 1.4 Types of Mechanism Motion
    5. 1.5 Kinematic Synthesis
    6. 1.6 Units and Conversions
    7. 1.7 Software Resources
    8. 1.8 Summary
    9. References
    10. Additional Reading
  10. 2. Mathematical Concepts in Kinematics
    1. 2.1 Introduction
    2. 2.2 Complex Numbers and Operations
      1. 2.2.1 Complex Number Forms
      2. 2.2.2 Complex Number Addition
      3. 2.2.3 Complex Number Multiplication and Differentiation
    3. 2.3 Vector and Point Representation
    4. 2.4 Linear Simultaneous Equations, Matrices, and Matrix Operations
      1. 2.4.1 Linear Simultaneous Equation Systems and Matrices
      2. 2.4.2 Matrix Transpose, Addition, Subtraction, and Multiplication
      3. 2.4.3 The Identity Matrix and Matrix Inversion
    5. 2.5 Intermediate and Total Spatial Motion
    6. 2.6 General Transformation Matrix
    7. 2.7 Summary
    8. References
    9. Additional Reading
    10. Problems
  11. 3. Fundamental Concepts in Kinematics
    1. 3.1 Types of Planar and Spatial Mechanisms
      1. 3.1.1 Planar Four-Bar Mechanism
      2. 3.1.2 Slider-Crank Mechanism
      3. 3.1.3 Geared Five-Bar Mechanism
      4. 3.1.4 Planar Multiloop Six-Bar Mechanisms
      5. 3.1.5 Spatial Four-Bar Mechanisms
    2. 3.2 Links, Joints, and Mechanism Mobility
    3. 3.3 Number Synthesis
    4. 3.4 Grashof’s Criteria and Transmission Angle
    5. 3.5 Circuit Defect
    6. 3.6 Mechanism Inversion
    7. 3.7 Passive Degree of Freedom and Paradoxes
    8. 3.8 Summary
    9. References
    10. Problems
  12. 4. Kinematic Analysis of Planar Mechanisms
    1. 4.1 Introduction
    2. 4.2 Numerical Solution Method for Two Simultaneous Equations
    3. 4.3 Link Velocity and Acceleration Components in Planar Space
    4. 4.4 Four-Bar Mechanism Analysis
      1. 4.4.1 Displacement Equations
      2. 4.4.2 Velocity Equations
      3. 4.4.3 Acceleration Equations
      4. 4.4.4 Kinematics of Coupler Locations of Interest
      5. 4.4.5 Instant Center, Centrodes, and Centrode Generation
    5. 4.5 Slider-Crank Mechanism Analysis
      1. 4.5.1 Displacement Equations
      2. 4.5.2 Velocity Equations
      3. 4.5.3 Acceleration Equations
      4. 4.5.4 Centrode Generation
    6. 4.6 Geared Five-Bar Mechanism Analysis
      1. 4.6.1 Displacement Equations
      2. 4.6.2 Velocity Equations
      3. 4.6.3 Acceleration Equations
      4. 4.6.4 Kinematics of Intermediate Link Locations of Interest
    7. 4.7 Watt II Mechanism Analysis
    8. 4.8 Stephenson III Mechanism Analysis
      1. 4.8.1 Displacement Equations
      2. 4.8.2 Velocity Equations
      3. 4.8.3 Acceleration Equations
      4. 4.8.4 Kinematics of Intermediate Link Locations of Interest
    9. 4.9 Time and Driver Angular Velocity
    10. 4.10 Mechanism Configurations
    11. 4.11 Constructing Cognates
    12. 4.12 Planar Mechanism Kinematic Analysis and Modeling in Simscape Multibody™
    13. 4.13 Summary
    14. References
    15. Additional Reading
    16. Problems
  13. 5. Dimensional Synthesis
    1. 5.1 Introduction
    2. 5.2 Branch and Order Defects
    3. 5.3 Planar Four-Bar Motion Generation: Three Precision Positions
    4. 5.4 Order- and Branch-Defect Elimination
    5. 5.5 Path Generation versus Motion Generation
    6. 5.6 Stephenson III Motion Generation: Three Precision Positions
    7. 5.7 Planar Four-Bar Function Generation: Three Precision Points
    8. 5.8 Planar Four-Bar Function Generation: FSPs and MSPs
    9. 5.9 Mechanism Dimensions: From Dimensional Synthesis to Kinematic Analysis
    10. 5.10 Summary
    11. References
    12. Additional Reading
    13. Problems
  14. 6. Static Force Analysis of Planar Mechanisms
    1. 6.1 Introduction
    2. 6.2 Static Loading in Planar Space
    3. 6.3 Four-Bar Mechanism Analysis
    4. 6.4 Slider-Crank Mechanism Analysis
    5. 6.5 Geared Five-Bar Mechanism Analysis
    6. 6.6 Watt II Mechanism Analysis
    7. 6.7 Stephenson III Mechanism Analysis
    8. 6.8 Planar Mechanism Static Force Analysis and Modeling in Simscape Multibody™
    9. 6.9 Summary
    10. References
    11. Additional Reading
    12. Problems
  15. 7. Dynamic Force Analysis of Planar Mechanisms
    1. 7.1 Introduction
    2. 7.2 Dynamic Loading in Planar Space
    3. 7.3 Four-Bar Mechanism Analysis
    4. 7.4 Slider-Crank Mechanism Analysis
    5. 7.5 Geared Five-Bar Mechanism Analysis
    6. 7.6 Watt II Mechanism Analysis
    7. 7.7 Stephenson III Mechanism Analysis
    8. 7.8 Mass Moment of Inertia and Computer-Aided Design Software
    9. 7.9 Planar Mechanism Dynamic Force Analysis and Modeling in Simscape Multibody™
    10. 7.10 Summary
    11. References
    12. Additional Reading
    13. Problems
  16. 8. Design and Kinematic Analysis of Gears
    1. 8.1 Introduction
    2. 8.2 Gear Types
    3. 8.3 SPUR-Gear Nomenclature and Relationships of Mating Gears
      1. 8.3.1 Spur-Gear Nomenclature
      2. 8.3.2 Pressure Angle and Involute Tooth Profile
      3. 8.3.3 Gear Center Distance and Contact Ratio
      4. 8.3.4 Gear-Tooth Interference and Undercutting
      5. 8.3.5 Backlash
    4. 8.4 Helical-Gear Nomenclature
    5. 8.5 Gear Kinematics
      1. 8.5.1 Spur Gears and Gear Trains
      2. 8.5.2 Planetary Gear Trains
      3. 8.5.3 Rack and Pinion Gears
      4. 8.5.4 Helical Gears
      5. 8.5.5 Bevel Gears
      6. 8.5.6 Worm Gears
    6. 8.6 Summary
    7. References
    8. Additional Reading
    9. Problems
  17. 9. Design and Kinematic Analysis of Disk Cams
    1. 9.1 Introduction
    2. 9.2 Follower Types
    3. 9.3 Follower Motion
      1. 9.3.1 Rise, Fall, and Dwell
      2. 9.3.2 Displacement, Velocity, Acceleration, and Jerk
      3. 9.3.3 Constant Velocity Motion
      4. 9.3.4 Constant Acceleration Motion
      5. 9.3.5 Simple Harmonic Motion
      6. 9.3.6 Cycloidal Motion
      7. 9.3.7 Polynomial Motion
    4. 9.4 Disk Cam Design and Pressure Angle
    5. 9.5 Summary
    6. References
    7. Additional Reading
    8. Problems
  18. 10. Kinematic Analysis of Spatial Mechanisms
    1. 10.1 Introduction
    2. 10.2 RRSS Mechanism Analysis
      1. 10.2.1 Displacement Equations
      2. 10.2.2 Velocity Equations
      3. 10.2.3 Acceleration Equations
    3. 10.3 RSSR Mechanism Analysis
      1. 10.3.1 Displacement Equations
      2. 10.3.2 Velocity Equations
      3. 10.3.3 Acceleration Equations
    4. 10.4 Four-Revolute Spherical Mechanism Analysis
    5. 10.5 Planar Four-Bar Kinematic Analysis Using RRSS and RSSR Kinematic Equations
    6. 10.6 Spatial Mechanism Kinematic Analysis and Modeling in Simscape Multibody™
    7. 10.7 Summary
    8. References
    9. Problems
  19. 11. Introduction to Robotic Manipulators
    1. 11.1 Introduction
    2. 11.2 Terminology and Nomenclature
    3. 11.3 Robotic Manipulator Mobility and Types
    4. 11.4 The General Transformation Matrix
    5. 11.5 Forward Kinematics
      1. 11.5.1 Definition and Application
      2. 11.5.2 P-P-P
      3. 11.5.3 R-P-P
      4. 11.5.4 R-R-P
      5. 11.5.5 R-R-R
      6. 11.5.6 R-R-C
    6. 11.6 Inverse Kinematics
      1. 11.6.1 Definition and Application
      2. 11.6.2 P-P-P
      3. 11.6.3 R-P-P
      4. 11.6.4 R-R-P
      5. 11.6.5 R-R-R
      6. 11.6.6 R-R-C
    7. 11.7 Robotic Manipulator Kinematic Analysis and Modeling in Simscape Multibody™
    8. 11.8 Summary
    9. References
    10. Additional Reading
    11. Problems
  20. Appendix A: User Information and Instructions for MATLAB®
    1. A.1 Required MATLAB Toolkits
    2. A.2 Description of MATLAB Operators and Functions
    3. A.3 Preparing and Running Files in MATLAB and Operations in Simscape Multibody
    4. A.4 Description of Simscape Multibody Functions
    5. A.5 Rerunning MATLAB and Simscape Multibody Files with Existing *.csv Files
    6. A.6 Minimum Precision Requirement for Appendix File User Input
  21. Appendix B: User Instructions for Chapter 4 MATLAB® Files
    1. B.1 Planar Four-Bar Mechanism
    2. B.2 Planar Four-Bar Fixed and Moving Centrode Generation
    3. B.3 Slider-Crank Mechanism
    4. B.4 Geared Five-Bar Mechanism (Two Gears)
    5. B.5 Geared Five-Bar Mechanism (Three Gears)
    6. B.6 Watt II Mechanism
    7. B.7 Stephenson III Mechanism
  22. Appendix C: User Instructions for Chapter 6 MATLAB® Files
    1. C.1 Planar Four-Bar Mechanism
    2. C.2 Slider-Crank Mechanism
    3. C.3 Geared Five-Bar Mechanism (Two Gears)
    4. C.4 Geared Five-Bar Mechanism (Three Gears)
    5. C.5 Watt II Mechanism
    6. C.6 Stephenson III Mechanism
  23. Appendix D: User Instructions for Chapter 7 MATLAB® Files
    1. D.1 Planar Four-Bar Mechanism
    2. D.2 Slider-Crank Mechanism
    3. D.3 Geared Five-Bar Mechanism (Two Gears)
    4. D.4 Geared Five-Bar Mechanism (Three Gears)
    5. D.5 Watt II Mechanism
    6. D.6 Stephenson III Mechanism
  24. Appendix E: User Instructions for Chapter 9 MATLAB® Files
    1. E.1 S, V Profile Generation and Cam Design: Constant Velocity Motion
    2. E.2 S, V, A Profile Generation and Cam Design: Constant Acceleration Motion
    3. E.3 S, V, A, J Profile Generation and Cam Design: Simple Harmonic Motion
    4. E.4 S, V, A, J Profile Generation and Cam Design: Cycloidal Motion
    5. E.5 S, V, A, J Profile Generation and Cam Design: 3-4-5 Polynomial Motion
    6. E.6 S, V, A, J Profile Generation and Cam Design: 4-5-6-7 Polynomial Motion
  25. Appendix F: User Instructions for Chapter 10 MATLAB® Files
    1. F.1 RRSS Mechanism
    2. F.2 RSSR Mechanism
  26. Appendix G: User Instructions for Chapter 11 MATLAB® Files
    1. G.1 R-P-P Robotic Manipulator Forward Kinematics
    2. G.2 R-R-P Robotic Manipulator Forward Kinematics
    3. G.3 R-R-R Robotic Manipulator Forward Kinematics
    4. G.4 R-R-C Robotic Manipulator Forward Kinematics
    5. G.5 R-P-P Robotic Manipulator Inverse Kinematics
    6. G.6 R-R-P Robotic Manipulator Inverse Kinematics
    7. G.7 R-R-R Robotic Manipulator Inverse Kinematics
    8. G.8 R-R-C Robotic Manipulator Inverse Kinematics
  27. Appendix H: User Instructions for Chapter 4 MATLAB® and Simscape Multibody™ Files
    1. H.1 Planar Four-Bar Mechanism
    2. H.2 Slider-Crank Mechanism
    3. H.3 Geared Five-Bar Mechanism (Two Gears)
    4. H.4 Geared Five-Bar Mechanism (Three Gears)
    5. H.5 Watt II Mechanism
    6. H.6 Stephenson III Mechanism
  28. Appendix I: User Instructions for Chapter 6 MATLAB® and Simscape Multibody™ Files
    1. I.1 Planar Four-Bar Mechanism
    2. I.2 Slider-Crank Mechanism
    3. I.3 Geared Five-Bar Mechanism (Two Gears)
    4. I.4 Geared Five-Bar Mechanism (Three Gears)
    5. I.5 Watt II Mechanism
    6. I.6 Stephenson III Mechanism
  29. Appendix J: User Instructions for Chapter 7 MATLAB® and Simscape Multibody™ Files
    1. J.1 Planar Four-Bar Mechanism
    2. J.2 Slider-Crank Mechanism
    3. J.3 Geared Five-Bar Mechanism (Two Gears)
    4. J.4 Geared Five-Bar Mechanism (Three Gears)
    5. J.5 Watt II Mechanism
    6. J.6 Stephenson III Mechanism
  30. Appendix K: User Instructions for Chapter 10 MATLAB® and Simscape Multibody™ Files
    1. K.1 RRSS Mechanism
    2. K.2 RSSR Mechanism
  31. Appendix L: User Instructions for Chapter 11 MATLAB® and Simscape Multibody™ Files
    1. L.1 R-P-P Robotic Manipulator Forward Kinematics
    2. L.2 R-R-P Robotic Manipulator Forward Kinematics
    3. L.3 R-R-R Robotic Manipulator Forward Kinematics
    4. L.4 R-R-C Robotic Manipulator Forward Kinematics
  32. Index

Product information

  • Title: Kinematics and Dynamics of Mechanical Systems, 3rd Edition
  • Author(s): Kevin Russell, John Q. Shen, Raj Sodhi
  • Release date: December 2022
  • Publisher(s): CRC Press
  • ISBN: 9781000803808