Book description
R is a statistical computing language that’s ideal for answering quantitative finance questions. This book gives you both theory and practice, all in clear language with stacks of real-world examples. Ideal for R beginners or expert alike.
- Use time series analysis to model and forecast house prices
- Estimate the term structure of interest rates using prices of government bonds
- Detect systemically important financial institutions by employing financial network analysis
In Detail
Quantitative finance is an increasingly important area for businesses, and skilled professionals are highly sought after. The statistical computing language R is becoming established in universities and in industry as the lingua franca of data analysis and statistical computing.
Introduction to R for Quantitative Finance will show you how to solve real-world quantitative finance problems using the statistical computing language R. The book covers diverse topics ranging from time series analysis to financial networks. Each chapter briefly presents the theory behind specific concepts and deals with solving a diverse range of problems using R with the help of practical examples.
This book will be your guide on how to use and master R in order to solve real-world quantitative finance problems. This book covers the essentials of quantitative finance, taking you through a number of clear and practical examples in R that will not only help you to understand the theory, but how to effectively deal with your own real-life problems.
Starting with time series analysis, you will also learn how to optimize portfolios and how asset pricing models work. The book then covers fixed income securities and derivatives like credit risk management. The last chapters of this book will also provide you with an overview of exciting topics like extreme values and network analysis in quantitative finance.
Table of contents
-
Introduction to R for Quantitative Finance
- Table of Contents
- Introduction to R for Quantitative Finance
- Credits
- About the Authors
- About the Reviewers
- www.PacktPub.com
- Preface
- 1. Time Series Analysis
- 2. Portfolio Optimization
- 3. Asset Pricing Models
- 4. Fixed Income Securities
- 5. Estimating the Term Structure of Interest Rates
- 6. Derivatives Pricing
- 7. Credit Risk Management
- 8. Extreme Value Theory
- 9. Financial Networks
- A. References
- Index
Product information
- Title: Introduction to R for Quantitative Finance
- Author(s):
- Release date: November 2013
- Publisher(s): Packt Publishing
- ISBN: 9781783280933
You might also like
book
Mastering R for Quantitative Finance
Use R to optimize your trading strategy and build up your own risk management system In …
book
Learning Quantitative Finance with R
Implement machine learning, time-series analysis, algorithmic trading and more About This Book Understand the basics of …
book
Handbook of Finance: Valuation, Financial Modeling, and Quantitative Tools
Volume III Valuation, Financial Modeling, and Quantitative Tools contains the most comprehensive coverage of the analytical …
book
Big Data and Machine Learning in Quantitative Investment
Get to know the ‘why’ and ‘how’ of machine learning and big data in quantitative investment …