1. a. D4 = {1, a, a2, a3, b, ba, ba2, ba3} where o(a) = 4, o(b) = 2 and aba = b. The classes are {1}, {a, a3}, {a2}, {b, ba2}, {ba, ba3}. Since normal subgroups are of orders 1, 2, 4, 8, they are {1}, {1, a2}, {1, a, a2, a3}, {1, b, a2, ba2}, {1, a2, ba, ba3} and D4.
3. If
am =
g−1ag with
g G, then
By induction we get
for all
k ≥ 0. Since
G is finite, let
gk = 1,
k ≥ 1. Then
whence 1 −
mk =
qn. This gives 1 =
mk +
qn, so gcd (
m,
n) = 1.
5. Let
H =
class a1 ∪ . . . ∪
classan. Given
g G and
h H, let
h classai. Then
g−1hg classai ⊆
H, so
g−1hg H. Then
g−1Hg ⊆
H, as ...