1.3 Integers Modulo n

1.
a. True. 40−13=3·9
c. True. −29−6=(−5)7
e. True. 8−8=0·n for any n.
g. False. 84≡(64)2≡(−1)2≡1 (mod13).
2.
a. 2k−4=7q, so q is even. Thus k=2+7x for some integer x; that is k≡2 (mod 7).
c 2k≡0 (mod 9), so 2k=9q. Thus 2 img q, so k=9x for some integer x; that is k≡0 (mod 9).
3.
a. 10≡0 (mod k), so k img 10: k=2, 5, 10.
c. k2−3=qk, so k img 3. Thus k=1, 3 so, (as k≥2 by assumption) k=3.
5.
a. ab (mod 0) means ab=q·0 for some q, that is a=b.
6.
a. aa for all a because n img (aa). Hence if n img (ab), then n img (ba). Hence if ab=xn and bc=yn, img, then ac=(x+y)n.
7. If n=pm and ab(mod n), then ab=qn=qpm. Thus ab(modm).
8.
a. In img, so , . Since 515=6·85+5 we get . Hence ...

Get Introduction to Abstract Algebra, Solutions Manual, 4th Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.