1.2 Divisors and Prime Factorization

1.
a. 391=23·17+0
c. −116=(−9)·13+1
2.
a. n/d=51837/386=134.293, so q=134. Thus r=nqd=113.
3. If d>0, then imgdimg=d and this is the division algorithm. If d<0, then imgdimg=−d>0 so n=q(−d)+r=(−q)d+r, 0≤rimgdimg.
5. Write m=2k+1, n=2j+1. Then m2n2=4[k(k+1)−j(j+1)]. But each of k(k+1) and j(j+1) is even, so 8 img (m2n2).
7.
a. 10(11k+4)−11(10k+3)=7, so d img 7. Thus d=1 or d=7.
9.

equation

equation

11. If m=qd, then , so . Similarly, . If d=xm+yn, then , so any common divisor of and

Get Introduction to Abstract Algebra, Solutions Manual, 4th Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.