References

  1. Adelson, R.M. (1966). Compound Poisson distributions. Operational Research Quarterly 17: 73–75.
  2. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In: Proceedings of the 2nd International Symposium on Information Theory (ed. B.N. Petrov and F. Csáki). Budapest: Akadémiai Kiadó. Republished in: (1992). Breakthroughs in Statistics, vol. 1 (ed. S. Kotz and N.L. Johnson). New York, NY: Springer‐Verlag.
  3. Al‐Osh, M.A. and Aly, E.‐E. (1992). First order autoregressive time series with negative binomial and geometric marginals. Communications in Statistics ‐ Theory and Methods 21: 2483–2492.
  4. Al‐Osh, M.A. and Alzaid, A.A. (1987). First‐order integer‐valued autoregressive (INAR(1)) process. Journal of Time Series Analysis 8: 261–275.
  5. Al‐Osh, M.A. and Alzaid, A.A. (1988). Integer‐valued moving average (INMA) process. Statistical Papers 29: 281–300.
  6. Altay, N., Litteral, L.A., and Rudisill, F. (2012). Effects of correlation on intermittent demand forecasting and stock control. International Journal of Production Economics 135: 275–283.
  7. Altay, N., Rudisill, F., and Litteral, L.A. (2008). Adapting Wright's modification of Holt's method to forecasting intermittent demand. International Journal of Production Economics 111: 389–408.
  8. Alzaid, A.A. and Omair, M.A. (2014). Poisson difference integer valued autoregressive model of order one. Bulletin of the Malaysian Mathematical Sciences Society 37: 465–485.
  9. Armstrong, J.S. (1985). Long‐Range Forecasting: ...

Get Intermittent Demand Forecasting now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.