Handbook of Optical Design, 3rd Edition

Book description

This classroom-tested reference is an invaluable resource for students, engineers, and scientists in the field of optical technology and applications. In one volume, it covers the fundamentals of geometric optics and their application to lens design. The book incorporates classic aspects along with modern methods, tools, and instruments. It offers practical details and specifications for optical system design, in addition to the latest computing techniques to evaluate them. The third edition includes new and updated material, more design examples, and clearer figures, some now in color.

Table of contents

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright Page
  5. Table of Contents
  6. Preface to the Third Edition
  7. Preface to the Second Edition
  8. Preface to the First Edition
  9. Chapter 1 Geometrical Optics Principles
    1. 1.1 Wave Nature of Light and Fermat’s Principle
      1. 1.1.1 Gradient Index of Refraction
    2. 1.2 Reflection and Refraction Laws
      1. 1.2.1 Reflection Laws
      2. 1.2.2 Refraction Laws
      3. 1.2.3 Vectorial Form of Refraction Laws
    3. 1.3 Basic Meridional Ray Tracing Equations
      1. 1.3.1 Meridional Ray Tracing by the L–U Method
      2. 1.3.2 Meridional Ray Tracing by the Q–U Method
    4. 1.4 Gaussian or First-Order Optics
      1. 1.4.1 Paraxial Ray Tracing by y–nu Method and Matrix Ray Tracing
    5. 1.5 Image Formation
    6. 1.6 Stop, Pupils, and Principal Ray
      1. 1.6.1 Telecentric Systems
    7. 1.7 Delano’s Relation
    8. 1.8 Optical Sine Theorem
    9. 1.9 Lagrange Invariant
    10. 1.10 Herschel Invariant and Image Magnifications
    11. References
  10. Chapter 2 Thin Lenses and Spherical Mirrors
    1. 2.1 Thin Lenses
    2. 2.2 Formulas for Image Formation with Thin Lenses
    3. 2.3 Nodal Points of a Thin Lens
    4. 2.4 Image Formation with Converging Lenses
    5. 2.5 Image Formation with Diverging Lenses
    6. References
  11. Chapter 3 Systems of Several Lenses and Thick Lenses
    1. 3.1 Focal Length and Power of a Lens System
    2. 3.2 Image Formation with Thick Lenses or Systems of Lenses
    3. 3.3 Cardinal Points
    4. 3.4 Image Formation with a Tilted or Curved Object
    5. 3.5 Thick Lenses
    6. 3.6 Systems of Thin Lenses
    7. 3.7 The Lagrange Invariant in a System of Thin Lenses
    8. 3.8 Effect of Object or Stop Shifting
      1. 3.8.1 Shifting the Stop
      2. 3.8.2 Shifting Object and Image Planes
    9. 3.9 The Delano y – y Diagram
      1. 3.9.1 A Shift of the Stop
      2. 3.9.2 A Shift of the Object and Image
    10. References
  12. Chapter 4 Chromatic Aberrations
    1. 4.1 Introduction
    2. 4.2 Axial Chromatic Aberration
      1. 4.2.1 Axial Chromatic Aberration of a Thin Lens
      2. 4.2.2 Achromatic Doublet
      3. 4.2.3 Achromatic Doublet with Separated Elements
      4. 4.2.4 Axial Chromatic Aberration Correction with One Glass
      5. 4.2.5 Spherochromatism
    3. 4.3 Conrady’s D – d Method of Achromatization
    4. 4.4 Secondary Color Aberration
      1. 4.4.1 Apochromatic Triplet
    5. 4.5 Magnification Chromatic Aberration
      1. 4.5.1 Stop Shift Equations for Chromatic Aberrations
      2. 4.5.2 Correction of the Magnification Chromatic Aberration
      3. 4.5.3 Magnification Chromatic Aberration Correction with One Glass
    6. References
  13. Chapter 5 Spherical Aberration
    1. 5.1 Spherical Aberration Calculation
    2. 5.2 Primary Spherical Aberration
      1. 5.2.1 Spherical Aberration of a Thin Lens
      2. 5.2.2 A System of Thin Lenses
      3. 5.2.3 Spherical Aberration for a Plane-Parallel Plate in Converging Light
    3. 5.3 Aspherical Surfaces
    4. 5.4 Spherical Aberration of Aspherical Surfaces
    5. 5.5 Surfaces without Spherical Aberration
      1. 5.5.1 Refractive Spherical Surfaces
      2. 5.5.2 Reflective Conic Surfaces
      3. 5.5.3 Descartes’ Ovoid
    6. 5.6 Aberration Polynomial for Spherical Aberration
      1. 5.6.1 Caustic
    7. 5.7 High-Order Spherical Aberration
      1. 5.7.1 Aberration Balancing
    8. 5.8 Spherical Aberration Correction with Gradient Index
    9. References
  14. Chapter 6 Monochromatic Off-Axis Aberrations
    1. 6.1 Introduction
      1. 6.1.1 Introduction to Off-Axis Aberrations
      2. 6.1.2 Oblique Rays
      3. 6.1.3 Off-Axis Aberrations Definitions
    2. 6.2 Petzval Curvature
    3. 6.3 Coma
      1. 6.3.1 Offense against the Sine Condition
      2. 6.3.2 Coma Contribution of Each Surface
      3. 6.3.3 Coma in a Single Thin Lens
    4. 6.4 Astigmatism
      1. 6.4.1 Coddington Equations
        1. 6.4.1.1 Tangential Image
        2. 6.4.1.2 Sagittal Image
        3. 6.4.1.3 General Expression
      2. 6.4.2 Relations between Petzval Curvature and Astigmatism
      3. 6.4.3 Comatic and Astigmatic Images
    5. 6.5 Aplanatic Surfaces
      1. 6.5.1 Aplanatic Refractive Spherical Surfaces
      2. 6.5.2 Aplanatic Wassermann–Wolf Surfaces
    6. 6.6 Distortion
    7. 6.7 Off-Axis Aberrations in Aspherical Surfaces
    8. 6.8 The Symmetrical Principle and the Bow–Sutton Conditions
    9. 6.9 Stop Shift Equations
    10. 6.10 Aberrations of the Pupil
    11. References
  15. Chapter 7 Aberration Polynomials and High-Order Aberrations
    1. 7.1 Wavefronts in an Optical System
    2. 7.2 Ray Aberrations and Wavefront Aberrations
    3. 7.3 Wavefront Aberration Polynomial
      1. 7.3.1 H. H. Hopkins Wavefront Aberration Polynomial for Centered Systems
      2. 7.3.2 Kingslake Wavefront Aberration Polynomial for Centered Systems
      3. 7.3.3 Seidel Wavefront Aberration Polynomial for Centered Systems
      4. 7.3.4 High-Order Buchdahl Aberration Polynomials for Centered Systems
      5. 7.3.5 Wavefront Aberration Polynomials for Noncentered and Asymmetric Systems
    4. 7.4 Zernike Polynomials
    5. 7.5 Fitting of Wavefront Deformations to a Polynomial
    6. 7.6 Wavefront Representation by an Array of Gaussians
    7. 7.7 Wavefront Aberrations in Refractive Surfaces
      1. 7.7.1 Analysis of the Optical Path Difference Equation
    8. 7.8 Wavefront Aberrations in Reflective Surfaces
    9. 7.9 Aldis Theorem
    10. References
  16. Chapter 8 Computer Evaluation of Optical Systems
    1. 8.1 Transverse Aberration Polynomials
      1. 8.1.1 Axial, Tangential, and Sagittal Plots
        1. 8.1.1.1 Axial Plots
        2. 8.1.1.2 Tangential Plots
        3. 8.1.1.3 Sagittal Plots
    2. 8.2 Transverse Aberrations with H. H. Hopkins, Seidel, and Buchdahl Coefficients
      1. 8.2.1 Transverse Aberrations and Ray Plots with Buchdahl Coefficients
        1. 8.2.1.1 Spherical Aberration
        2. 8.2.1.2 Coma
        3. 8.2.1.3 Astigmatism
        4. 8.2.1.4 Distortion
    3. 8.3 Meridional Ray Tracing and Stop Position Analysis
    4. 8.4 Spot Diagram
      1. 8.4.1 Geometrical Spot Size
      2. 8.4.2 Radial Energy Distribution
    5. 8.5 Wavefront Deformation
      1. 8.5.1 Calculation from Transverse Aberrations Data
      2. 8.5.2 Direct Calculation of the Optical Path
      3. 8.5.3 Conrady’s Method to Compute Wavefront Deformations
    6. 8.6 Point and Line Spread Function
    7. 8.7 Optical Transfer Function
      1. 8.7.1 Geometrical Optical Transfer Function
    8. 8.8 Tolerance to Aberrations
      1. 8.8.1 Curvature and Thickness Tolerances
    9. References
  17. Chapter 9 Diffraction in Optical Systems
    1. 9.1 Huygens–Fresnel Theory
    2. 9.2 Fresnel Diffraction
    3. 9.3 Fraunhofer Diffraction
      1. 9.3.1 Circular Aperture
      2. 9.3.2 Annular Aperture
    4. 9.4 Diffraction Images with Aberrations
    5. 9.5 Strehl Ratio
    6. 9.6 Optical Transfer Function
      1. 9.6.1 OTF and Strehl Ratio
    7. 9.7 Resolution Criteria
    8. 9.8 Gaussian Beams
      1. 9.8.1 Focusing and Collimating a Gaussian Beam
    9. References
  18. Chapter 10 Prisms
    1. 10.1 Tunnel Diagram
    2. 10.2 Deflecting a Light Beam
    3. 10.3 Transforming an Image
    4. 10.4 Deflecting and Transforming Prisms
      1. 10.4.1 Deflecting Prisms
      2. 10.4.2 Retroreflecting Systems
    5. 10.5 Nondeflecting Transforming Prisms
      1. 10.5.1 Inverting and Reverting Prisms
      2. 10.5.2 Rotating Prisms
    6. 10.6 Beam-Splitting Prisms
    7. 10.7 Chromatic Dispersing Prisms
      1. 10.7.1 Equilateral Prism
      2. 10.7.2 Constant-Deviation Prism
      3. 10.7.3 Nondeflecting Chromatic Dispersing Prism
    8. 10.8 Nonimaging Prisms
    9. References
  19. Chapter 11 Basic Optical Systems and Simple Photographic Lenses
    1. 11.1 Optical Systems Diversity
    2. 11.2 Magnifiers and Single Imaging Lens
      1. 11.2.1 Magnifiers
      2. 11.2.2 Biocular Magnifiers
      3. 11.2.3 Single Imaging Lens
    3. 11.3 Landscape Lenses
    4. 11.4 Periscopic Lens
    5. 11.5 Achromatic Landscape Lens
    6. 11.6 Doublets
      1. 11.6.1 Nonaplanatic Doublet
      2. 11.6.2 Air-Spaced Doublet
      3. 11.6.3 Cemented Aplanatic Doublet
      4. 11.6.4 Apochromatic Lenses
    7. 11.7 Laser Light Collimators
    8. 11.8 Spherical and Paraboloidal Mirrors
      1. 11.8.1 Off-Axis Aberrations of Spherical Mirrors
        1. 11.8.1.1 Spherical Aberration
        2. 11.8.1.2 Coma
        3. 11.8.1.3 Astigmatism
        4. 11.8.1.4 Petzval Curvature
      2. 11.8.2 Concave Spherical Mirror
        1. 11.8.2.1 Spherical Aberration
        2. 11.8.2.2 Coma
        3. 11.8.2.3 Astigmatism
        4. 11.8.2.4 Petzval Curvature
      3. 11.8.3 Concave Paraboloidal Mirror
        1. 11.8.3.1 Spherical Aberration
        2. 11.8.3.2 Coma
        3. 11.8.3.3 Astigmatism
      4. 11.8.4 Convex Spherical Mirror
    9. 11.9 Some Catoptric and Catadioptric Systems
      1. 11.9.1 Mangin Mirror
      2. 11.9.2 Dyson System
      3. 11.9.3 Offner System
    10. 11.10 F-Theta Lenses
    11. 11.11 Fresnel Lenses and Gabor Plates
    12. References
  20. Chapter 12 Complex Photographic Lenses
    1. 12.1 Introduction
      1. 12.1.1 Main Parameters in Photographic Lenses
    2. 12.2 Asymmetrical Systems
      1. 12.2.1 Petzval Lens
      2. 12.2.2 Telephoto Lens
      3. 12.2.3 Cooke Triplet
      4. 12.2.4 Tessar Lens
    3. 12.3 Symmetrical Anastigmat Systems
      1. 12.3.1 Dagor Lens
      2. 12.3.2 Dialyte Lens
      3. 12.3.3 Double Gauss Lens
    4. 12.4 Varifocal and Zoom Lenses
    5. References
  21. Chapter 13 The Human Eye and Ophthalmic Lenses
    1. 13.1 The Human Eye
      1. 13.1.1 Eye Aberrations
    2. 13.2 Ophthalmic Lenses
      1. 13.2.1 Ophthalmic Lens Magnifying Power
    3. 13.3 Ophthalmic Lens Design
      1. 13.3.1 Tscherning Ellipses
      2. 13.3.2 Aspheric Ophthalmic Lenses
    4. 13.4 Prismatic Lenses
    5. 13.5 Spherocylindrical Lenses
    6. References
  22. Chapter 14 Astronomical Telescopes
    1. 14.1 Resolution and Light-Gathering Power
      1. 14.1.1 Diffraction Effects and Atmospheric Turbulence
      2. 14.1.2 Visual Limit Magnitude of a Telescope
      3. 14.1.3 Photographic and CCD Limit Magnitude of a Telescope
    2. 14.2 Reflecting Two-Mirror Cameras and Telescopes
      1. 14.2.1 First-Order Design of Two-Mirror Systems
      2. 14.2.2 Two-Mirror Telescope Light Shields
    3. 14.3 Catadioptric Cameras
      1. 14.3.1 Schmidt Camera
      2. 14.3.2 Bouwers Camera
      3. 14.3.3 Bouwers–Maksutov Camera
      4. 14.3.4 Anastigmatic Concentric Schmidt–Cassegrain Cameras
      5. 14.3.5 Flat-Field Anastigmatic Schmidt–Cassegrain Cameras
    4. 14.4 Astronomical Telescopes
      1. 14.4.1 Newton Telescope
      2. 14.4.2 Cassegrain Telescope
        1. 14.4.2.1 Spherical Aberration
        2. 14.4.2.2 Coma
        3. 14.4.2.3 Astigmatism
        4. 14.4.2.4 Petzval Curvature
        5. 14.4.2.5 Distortion
      3. 14.4.3 Ritchey–Chrétien Telescope
      4. 14.4.4 Dall–Kirham Telescope
      5. 14.4.5 Gregory Telescope
      6. 14.4.6 Schmidt–Cassegrain Telescope
      7. 14.4.7 Maksutov–Cassegrain Telescope
      8. 14.4.8 Coudé and Nasmyth Focus Configurations
    5. 14.5 Field Correctors
      1. 14.5.1 Single-Field Flattener
      2. 14.5.2 Ross Corrector
      3. 14.5.3 Wynne Corrector
      4. 14.5.4 Aspheric Correctors
    6. 14.6 Multiple-Mirror Telescopes
    7. 14.7 Active and Adaptive Optics
    8. References
  23. Chapter 15 Visual Systems and Afocal Systems
    1. 15.1 Visual Optical Systems
      1. 15.1.1 Exit Pupil Location in Visual Optical Systems
      2. 15.1.2 Optical Models of the Human Eye
    2. 15.2 Basic Telescopic System
    3. 15.3 Afocal Systems
      1. 15.3.1 Two-Mirror Afocal Systems
    4. 15.4 Visual and Terrestrial Telescopes
      1. 15.4.1 Galilean Telescopes
      2. 15.4.2 Terrestrial Telescope with Erecting Eyepiece
      3. 15.4.3 Terrestrial Telescope with Erecting Prisms
    5. 15.5 Telescope Eyepieces
      1. 15.5.1 Huygens and Ramsden Eyepieces
      2. 15.5.2 Kellner Eyepiece
      3. 15.5.3 Symmetrical or Plössl Eyepiece
      4. 15.5.4 Orthoscopic Eyepiece
      5. 15.5.5 Erfle Eyepiece
    6. 15.6 Relays and Periscopes
      1. 15.6.1 Indirect Ophthalmoscope
      2. 15.6.2 Endoscopes
    7. References
  24. Chapter 16 Microscopes
    1. 16.1 Compound Microscope
      1. 16.1.1 Microscope Aperture and Resolving Power
    2. 16.2 Microscope Objectives
      1. 16.2.1 Low-Power Objectives
      2. 16.2.2 Lister Objectives
      3. 16.2.3 Amici Objectives
      4. 16.2.4 Oil Immersion Objectives
      5. 16.2.5 Other Types of Objectives
      6. 16.2.6 Reflecting Objectives
      7. 16.2.7 Compact Disc Objectives
    3. 16.3 Microscope Eyepieces
      1. 16.3.1 Huygens Eyepieces
      2. 16.3.2 Wide-Field Eyepieces
    4. 16.4 Microscope Illuminators
    5. References
  25. Chapter 17 Projection Systems
    1. 17.1 Image Projectors
    2. 17.2 Main Projector Components
      1. 17.2.1 Lamp
      2. 17.2.2 Condenser
      3. 17.2.3 Projection Lens
    3. 17.3 Coherence Effects in Projectors
    4. 17.4 Anamorphic Projection
    5. 17.5 Slide and Movie Projectors
    6. 17.6 Overhead Projectors
    7. 17.7 Profile Projectors
    8. 17.8 Television Projectors
    9. 17.9 LCD Computer and Home Theater Projectors
    10. References
  26. Chapter 18 Lens Design Optimization
    1. 18.1 Basic Principles
    2. 18.2 Optimization Methods
    3. 18.3 Glatzel Adaptive Method
    4. 18.4 Constrained Damped Least-Squares Optimization Method
      1. 18.4.1 Linearization of the Problem
      2. 18.4.2 Use of the Lagrange Multipliers
      3. 18.4.3 Matrix Representation
      4. 18.4.4 Numerical Calculation of Matrix Solution
      5. 18.4.5 Use of the Weight Factors
    5. 18.5 Merit Function and Boundary Conditions
      1. 18.5.1 Merit Function
        1. 18.5.1.1 Color Averaging
        2. 18.5.1.2 Field Averaging
        3. 18.5.1.3 Distortion
      2. 18.5.2 Boundary Conditions
        1. 18.5.2.1 Axial Optical Thickness
        2. 18.5.2.2 Edge Optical Thickness
        3. 18.5.2.3 Average Lens Thickness
    6. 18.6 Modern Trends in Optical Design
      1. 18.6.1 Global Optimization and Simulated Annealing
    7. 18.7 Flowchart for a Lens Optimization Program
    8. 18.8 Practical Tips for the Use of Lens Evaluation Programs
      1. 18.8.1 Curvature, Thickness, and Separation Sign Conventions
      2. 18.8.2 Curvature or Radii of Curvature Specification
      3. 18.8.3 Thickness and Separation Specification
      4. 18.8.4 Some Useful Tricks
    9. 18.9 Some Commercial Lens Design Programs
    10. References
  27. Appendix 1: Notation and Primary Aberration Coefficients Summary
  28. Appendix 2: Mathematical Representation of Optical Surfaces
  29. Appendix 3: Optical Materials
  30. Appendix 4: Exact Ray Tracing of Skew Rays
  31. Appendix 5: General Bibliography on Lens Design
  32. Index

Product information

  • Title: Handbook of Optical Design, 3rd Edition
  • Author(s): Daniel Malacara-Hernández, Zacarías Malacara-Hernández
  • Release date: December 2017
  • Publisher(s): CRC Press
  • ISBN: 9781351832922