10-1. Signed Division by a Known Power of 2
Apparently, many people have made the mistake of assuming that a shift right signed of k positions divides a number by 2k, using the usual truncating form of division [GLS2]. It’s a little more complicated than that. The code shown below computes q = n ÷ 2k, for 1 ≤ k ≤ 31 [Hop].
shrsi t,n,k-1 Form the integer shri t,t,32-k 2**k - 1 if n < 0, else 0. add t,n,t Add it to n, shrsi q,t,k and shift right (signed).
It is branch-free. It also simplifies to three instructions in the common case of division by 2 (k = 1). It does, however, rely on the machine’s being able to shift by a large amount in a short time. The case k = 31 does not make too much sense, because the number 231 is not representable in ...
Get Hacker's Delight now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.