Engineering Physics

Book description

Written in a lucid style, this book assimilates the best practices of conceptual pedagogy, dealing at length with various topics such as crystallography, principles of quantum mechanics, free electron theory of metals, dielectric and magnetic properties, semiconductors, superconductivity, lasers, holography, nanotechnology and optics.

Table of contents

  1. Cover
  2. Title page
  3. Contents
  4. Foreword
  5. Preface
  6. Chapter 1. Bonding in Solids
    1. 1.1 Different Types of Bonding in Solids
    2. 1.2 Cohesive Energy and Estimation of Cohesive Energy of Ionic Solids
    3. 1.3 Estimation of Cohesive Energy of NaCl Molecule in a Solid
    4. 1.4 Madelung Constant
    5. Formula
    6. Solved Problems
    7. Multiple Choice Questions
    8. Answers
    9. Review Questions
  7. Chapter 2. Crystal Structures
    1. 2.1 Introduction
    2. 2.2 Space Lattice (or) Crystal Lattice
    3. 2.3 The Basis and Crystal Structure
    4. 2.4 Unit Cell and Lattice Parameters
    5. 2.5 Crystal Systems and Bravais Lattices
    6. 2.6 Structure and Packing Fractions of Simple Cubic [SC] Structure
    7. 2.7 Structure and Packing Fractions of Body-centred Cubic Structure [BCC]
    8. 2.8 Structure and Packing Fractions of Face-centred Cubic [FCC] Structure
    9. 2.9 Diamond Cubic Structure
    10. 2.10 NaCl Crystal Structure
    11. 2.11 Caesium Chloride [CsCl] Structure
    12. 2.12 Zinc Sulphide [ZnS] Structure
    13. 2.13 Stacking Sequence in Metallic Crystals
    14. 2.14 Calculation of Lattice Constant
    15. Solved Problems
    16. Multiple Choice Questions
    17. Answers
    18. Review Questions
  8. Chapter 3. Crystal Planes, X-ray Diffraction and Defects in Solids
    1. 3.1 Crystal Planes, Directions and Miller Indices
    2. 3.2 Distance of Separation Between Successive hkl Planes
    3. 3.3 Imperfections in Crystals
    4. 3.4 Energy for the Formation of a Vacancy and Number of Vacancies at Euqilibrium Concentration
    5. 3.5 Diffraction of X-rays by Crystal Planes and Bragg’s Law
    6. 3.6 Powder Method
    7. 3.7 Laue Method
    8. Formulae
    9. Solved Problems
    10. Multiple Choice Questions
    11. Answers
    12. Review Questions
  9. Chapter 4. Principles of Quantum Mechanics
    1. 4.1 Waves and Particles – de Broglie Hypothesis – Matter Waves
    2. 4.2 Relativistic Correction
    3. 4.3 Planck’s Quantum Theory of Black Body Radiation
    4. 4.4 Experimental Study of Matter Waves
    5. 4.5 Schrödinger’s Time-independent Wave Equation
    6. 4.6 Heisenberg Uncertainty Principle
    7. 4.7 Physical Significance of the Wave Function
    8. 4.8 Particle in a Potential Box
    9. Formulae
    10. Solved Problems
    11. Multiple Choice Questions
    12. Answers
    13. Review Questions
  10. Chapter 5. Electron Theory of Metals
    1. 5.1 Introduction
    2. 5.2 Classical Free Electron Theory of Metals
    3. 5.3 Relaxation Time, Mean Free Path, Mean Collision Time and Drift Velocity
    4. 5.4 Fermi-Dirac Distribution
    5. 5.5 Quantum Free Electron Theory of Electrical Conduction
    6. 5.6 Sources of Electrical Resistance
    7. 5.7 Band Theory of Solids
    8. 5.8 Bloch Theorem
    9. 5.9 Origin of Energy Bands Formation in Solids
    10. 5.10 Velocity and Effective Mass of an Electron
    11. 5.11 Distinction Between Metals, Semiconductors and Insulators
    12. Formulae
    13. Solved Problems
    14. Multiple Choice Questions
    15. Answers
    16. Review Questions
  11. Chapter 6. Dielectric Properties
    1. 6.1 Introduction
    2. 6.2 Dielectric Constant
    3. 6.3 Internal or Local Field
    4. 6.4 Clausius–Mosotti Relation
    5. 6.5 Orientational, Ionic and Electronic Polarizations
    6. 6.6 Frequency Dependence of Polarizability: [Dielectrics in Alternating Fields]
    7. 6.7 Piezoelectricity
    8. 6.8 Ferroelectricity
    9. 6.9 Frequency Dependence of Dielectric Constant
    10. 6.10 Important Requirements of Insulators
    11. Formulae
    12. Solved Problems
    13. Multiple Choice Questions
    14. Answers
    15. Review Questions
  12. Chapter 7. Magnetic Properties
    1. 7.1 Magnetic Permeability
    2. 7.2 Magnetization (M)
    3. 7.3 Origin of Magnetic Moment – Bohr Magneton – Electron Spin
    4. 7.4 Classification of Magnetic Materials
    5. 7.5 Classical Theory of Diamagnetism (Langevin Theory)
    6. 7.6 Theory of Paramagnetism
    7. 7.7 Domain Theory of Ferromagnetism
    8. 7.8 Hysteresis Curve
    9. 7.9 Anti-ferromagnetic Substances
    10. 7.10 Ferrimagnetic Substances [Ferrites]
    11. 7.11 Soft and Hard Magnetic Materials
    12. 7.12 Applications of Ferrites
    13. Formulae
    14. Solved Problems
    15. Multiple Choice Questions
    16. Answers
    17. Review Questions
  13. Chapter 8. Semiconductors
    1. 8.1 Introduction
    2. 8.2 Intrinsic Semiconductors – Carrier Concentration
    3. 8.3 Electrical Conductivity of a Semiconductor
    4. 8.4 Extrinsic Semiconductors
    5. 8.5 Carrier Concentration in Extrinsic Semiconductors
    6. 8.6 Minority Carrier Life Time
    7. 8.7 Drift and Diffusion Currents
    8. 8.8 Einstein’s Relations
    9. 8.9 Continuity Equation
    10. 8.10 Hall Effect
    11. 8.11 Direct and Indirect Band Gap Semiconductors
    12. 8.12 Formation of p-n Junction
    13. 8.13 Energy Band Diagram of p-n Diode
    14. 8.14 Diode Equation
    15. 8.15 p-n Junction Biasing
    16. 8.16 V–I Characteristics of p-n Diode
    17. 8.17 p-n Diode Rectifier
    18. 8.18 Light Emitting Diode [LED]
    19. 8.19 Liquid Crystal Display (LCD)
    20. 8.20 Photodiodes
    21. Formulae
    22. Solved Problems
    23. Multiple Choice Questions
    24. Answers
    25. Review Questions
  14. Chapter 9. Superconductivity
    1. 9.1 Introduction
    2. 9.2 General Features of Superconductors
    3. 9.3 Type-I and Type-II Superconductors
    4. 9.4 Penetration Depth
    5. 9.5 Flux Quantization
    6. 9.6 Quantum Tunneling
    7. 9.7 Josephson’s Effect
    8. 9.8 BCS Theory
    9. 9.9 Applications of Superconductivity
    10. Formulae
    11. Solved Problems
    12. Multiple Choice Questions
    13. Answers
    14. Review Questions
  15. Chapter 10. Lasers
    1. 10.1 Introduction
    2. 10.2 Characteristics of Laser Radiation
    3. 10.3 Spontaneous and Stimulated Emission
    4. 10.4 Einstein’s Coefficients
    5. 10.5 Population Inversion
    6. 10.6 Helium–Neon Gas [He–Ne] Laser
    7. 10.7 Ruby Laser
    8. 10.8 Semiconductor Lasers
    9. 10.9 Carbon Dioxide Laser
    10. 10.10 Applications of Lasers
    11. Formula
    12. Solved Problems
    13. Multiple Choice Questions
    14. Answers
    15. Review Questions
  16. Chapter 11. Fibre Optics
    1. 11.1 Introduction
    2. 11.2 Principle of Optical Fibre, Acceptance Angle and Acceptance Cone
    3. 11.3 Numerical Aperture (NA)
    4. 11.4 Step Index Fibres and Graded Index Fibres–transmission of Signals in Them
    5. 11.5 Difference Between Step Index Fibres and Graded Index Fibres
    6. 11.6 Differences Between Single Mode Fibres and Multimode Fibres
    7. 11.7 Attenuation in Optical Fibres
    8. 11.8 Optical Fibres in Communication
    9. 11.9 Advantages of Optical Fibres in Communication
    10. 11.10 Fibre Optic Sensing Applications
    11. 11.11 Applications of Optical Fibres in Medical Field
    12. Formulae
    13. Solved Problems
    14. Multiple Choice Questions
    15. Answers
    16. Review Questions
  17. Chapter 12. Holography
    1. 12.1 Introduction
    2. 12.2 Basic Principle of Holography
    3. 12.3 Recording of Image on a Holographic Plate
    4. 12.4 Reconstruction of Image From a Hologram
    5. 12.5 Applications of Holography
    6. Multiple Choice Questions
    7. Answers
    8. Review Questions
  18. Chapter 13. Nanotechnology
    1. 13.1 Basic principle of Nanoscience and Nanotechnology
    2. 13.2 Physical Properties
    3. 13.3 Chemical Properties
    4. 13.4 Fabrication
    5. 13.5 Production of Nanoparticle
    6. 13.6 Carbon Nanotubes
    7. 13.7 Application of Nanotechnology
    8. Multiple Choice Questions
    9. Answers
    10. Review Questions
  19. Chapter 14. Optics
    1. 14.1 Superposition of Waves
    2. 14.2 Young’s Double Slit Experiment
    3. 14.3 Coherence
    4. 14.4 Interference in Thin Films by Reflection
    5. 14.5 Newton’s Rings
    6. 14.6 Fresnel and Fraunhofer Diffraction
    7. 14.7 Fraunhofer Diffraction at Single Slit
    8. 14.8 Fraunhofer Diffraction at Double Slit
    9. 14.9 Fraunhofer diffraction at a Circular Aperture
    10. 14.10 Plane Diffraction Grating [Diffraction at n Slits]
    11. 14.11 Grating Spectrum
    12. 14.12 Rayleigh’s Criterion for Resolving Power
    13. 14.13 Resolving Power of a Plane Transmission Grating
    14. 14.14 Representation of Polarized and Unpolarized Light
    15. 14.15 Polarization by Reflection
    16. 14.16 Malus Law
    17. 14.17 Double Refraction
    18. 14.18 Nicol Prism
    19. 14.19 Quater-wave Plate
    20. 14.20 Half-wave Plate
    21. 14.21 Theory of Circular and Elliptically Polarized Light
    22. Formulae
    23. Solved Problems
    24. Multiple Choice Questions
    25. Answers
    26. Review Questions
  20. Dictionary of Selected Terms
  21. Question Papers
  22. Acknowledgements
  23. Copyright

Product information

  • Title: Engineering Physics
  • Author(s):
  • Release date: October 2009
  • Publisher(s): Pearson India
  • ISBN: 9788131730928