Electronic Circuit Analysis

Book description

Electronic Circuit Analysis is designed to serve as a textbook for a two semester undergraduate course on electronic circuit analysis. It builds on the subject from its basic principles over fifteen chapters, providing detailed coverage on the design and analysis of electronic circuits.

Table of contents

  1. Cover
  2. Title Page
  3. Contents
  4. Dedication
  5. Preface
  6. Chapter 1 Electron Dynamics
    1. 1.1 Motion of Electrons in Electric Fields
    2. 1.2 Electrostatic Deflection in a Cathode Ray Tube
    3. 1.3 Motion of Electrons in Magnetic Fields (Magnetic Deflection)
    4. 1.4 Magnetic Deflection in a Cathode Ray Tube
    5. 1.5 Comparison Between Electrostatic and Magnetic Deflections
    6. 1.6 Electrostatic Focussing
    7. 1.7 Cathode Ray Oscilloscope
    8. Summary
    9. Questions for Practice
    10. Multiple Choice Questions
  7. Chapter 2 P-N Junction Diode Characteristics
    1. 2.1 Review of Semiconductor Physics
    2. 2.2 Energy-Band Diagrams of Semiconductor Materials
    3. 2.3 P- and N-Type Semiconductors
    4. 2.4 Mass-Action Law
    5. 2.5 Continuity Equation (Conservation of Charge)
    6. 2.6 Hall Effect
    7. 2.7 Qualitative Theory of P-N Junction (Open Circuited P-N Junction)
    8. 2.8 P-N Junction Diode (Forward Bias and Reverse Bias to P-N Junctions)
    9. 2.9 The Law of Junction
    10. 2.10 Diode Equation (Current Components in a P-N Semiconductor Diode)
    11. 2.11 Volt-Ampere Characteristics of P-N Diode
    12. 2.12 Temperature Dependence of V-I Characteristics (Diode Current)
    13. 2.13 Transition and Diffusion Capacitances (Diode Junction Capacitances)
    14. 2.14 Diode Equivalent Circuits
    15. 2.15 Breakdown Mechanisms of Semiconductor Diodes
    16. 2.16 Zener Diode (Voltage-Regulating Diode) Characteristics
    17. Summary
    18. Questions for Practice
    19. Multiple Choice Questions
  8. Chapter 3 Rectifiers, Filters and Voltage Regulators
    1. 3.1 Introduction
    2. 3.2 Half-Wave Rectifier Circuit (HWR Circuit Working Principles)
    3. 3.3 Full-Wave Rectifier Circuit
    4. 3.4 Bridge Rectifier Circuit (Full-Wave Rectifier)
    5. 3.5 Filter Circuits
    6. 3.6 Half-Wave Rectifier with Inductor Filter (Choke Input Filter)
    7. 3.7 Half-Wave Rectifier Circuit with Capacitor Filter
    8. 3.8 Full-Wave Rectifier Circuit with Capacitor Filter
    9. 3.9 L-Section Filter or Choke Input Filter or L-Filter
    10. 3.10 Multiple L-Section Filter
    11. 3.11 π-Section Filter
    12. 3.12 Analysis of π-Section Filter (CLC Filter, Capacitor Input Filter)
    13. 3.13 Voltage Regulators
    14. 3.14 Simple Voltage Regulator Circuit Using Zener Diode
    15. 3.15 Block Diagram of Series Voltage Regulator
    16. 3.16 Series Voltage Regulator Circuits
    17. 3.17 Block Diagram of Shunt Voltage Regulators
    18. 3.18 Shunt Voltage Regulator Circuits
    19. 3.19 Current Limiting Techniques
    20. 3.20 Voltage Multiplier Circuits
    21. 3.21 Voltage Tripler
    22. 3.22 Voltage Quadrupler
    23. 3.23 Adjustable Voltage Regulators
    24. Summary
    25. Questions for Practice
    26. Multiple Choice Questions
  9. Chapter 4 Characteristics of Transistor Devices (BJT, FET and MOSFET)
    1. 4.1 Introduction
    2. 4.2 Bipolar Junction Transistor (BJT): Structure of Materials
    3. 4.3 Different Configurations of Bipolar Junction Transistor
    4. 4.4 Principle of Working of NPN Transistor (Current Components Through Transistor)
    5. 4.5 Working of NPN Transistor and Transistor Currents
    6. 4.6 Base Width Modulation and Early Effect
    7. 4.7 V-I Characteristics of Common Emitter Transistors (Static Characteristics of Common Emitter Transistor)
    8. 4.8 Small Signal Low-Frequency Transistor Parameter Definitions (Transistor h-Parameters)
    9. 4.9 h-Parameter Definitions for Common Emitter Transistor
    10. 4.10 h-Parameter Definitions for Common Base Transistor
    11. 4.11 h-Parameter Definitions for Common Collector Transistor
    12. 4.12 Comparisons of CE, CB, CC Transistor Configurations
    13. 4.13 Determination of h-Parameters from Transistor Characteristics
    14. 4.14 Common Base Transistor Characteristics and Parameters
    15. 4.15 Biasing Circuit for PNP Transistor in Common Emitter Configuration
    16. 4.16 Explanation of the need of Biasing Voltages for the Transistor Devices
    17. 4.17 Transistor Specifications
    18. 4.18 High-Frequency Linear Models for the Common Emitter Transistor
    19. 4.19 Applications of BJT as a Switch
    20. 4.20 Typical Structural Details of JFET
    21. 4.21 Working of JFET
    22. 4.22 Transfer (Mutual) Characteristics of JFET
    23. 4.23 Drain (Output) Characteristics of Field Effect Transistor
    24. 4.24 Definitions of FET Constants
    25. 4.25 Comparison Between Field Effect Transistor and Transistor
    26. 4.26 Metal Oxide Semiconductor Field Effect Transistor
    27. 4.27 Output Characteristics for an N-Channel Enhancement-Mode MOSFET
    28. 4.28 Depletion Enhancement MOSFET (DE MOSFET) (MOSFET with Built-In Channel)
    29. 4.29 Comparisons of JFET and MOSFET with respect to Various Features
    30. 4.30 Unijunction Transistor
    31. 4.31 Application of UJT Device as an Oscillator
    32. Summary
    33. Questions for Practice
    34. Multiple Choice Questions
  10. Chapter 5 Transistor Biasing and Stabilisation Circuits
    1. 5.1 Basic Concepts of an Amplifier
    2. 5.2 Need for Biasing Transistor
    3. 5.3 Transistor Biasing Circuits
    4. 5.4 Fixed-Bias Circuit (Base Bias Circuit) for Common Emitter Transistor
    5. 5.5 Stability Factor
    6. 5.6 Collector-to-Base Bias Circuit to CE Transistor
    7. 5.7 Potential (Voltage)-Divider-Bias to CE Transistor
    8. 5.8 Design of Potential (Voltage)-Divider-Bias Circuit
    9. 5.9 Bias Compensation Circuits Using Diodes and Thermistors
    10. 5.10 Thermistor Compensation
    11. 5.11 Thermal Runaway and Thermal Stability
    12. 5.12 Condition for Thermal Stability
    13. 5.13 Basic FET Amplifier Circuit
    14. 5.14 FET Bias Using Fixed-Bias Circuit
    15. 5.15 Self-Biasing Circuit for FET
    16. 5.16 Voltage-Divider-Bias Circuit for FET
    17. 5.17 Biasing of Enhancement MOSFET
    18. 5.18 Drain Feedback Bias Circuit
    19. 5.19 Potential-Divider-Biasing Circuit for EMOSFET
    20. Summary
    21. Questions for Practice
    22. Multiple Choice Questions
  11. Chapter 6 Transistor (BJT) Amplifiers
    1. 6.1 Introduction
    2. 6.2 Classification of Amplifier Circuits
    3. 6.3 Single-Stage Common Emitter Transistor Amplifier
    4. 6.4 Design Procedure to Fix up the DC-Operating Conditions
    5. 6.5 Power Dissipation Curve and DC Load Line
    6. 6.6 Design of Circuit Components of Biasing Circuit
    7. 6.7 Common Emitter Transistor Amplifier with AC Signal Operations
    8. 6.8 The h-Parameters of the Transistor
    9. 6.9 Transistor Amplifier Analysis Using h-Parameter Equivalent Circuits
    10. 6.10 Common Emitter Transistor Amplifier Analysis
    11. 6.11 Common Base Transistor Amplifier Analysis
    12. 6.12 Common Collector Transistor Amplifier Analysis
    13. 6.13 Emitter Follower Transistor Amplifier Analysis
    14. 6.14 Frequency Response of RC-Coupled CE Transistor Amplifier
    15. 6.15 Resistance Capacitance Coupled Transistor Amplifier
    16. Summary
    17. Questions for Practice
    18. Multiple Choice Questions
  12. Chapter 7 Feedback Amplifiers
    1. 7.1 Introduction
    2. 7.2 Fundamental Concepts of Feedback Amplifier Circuits
    3. 7.3 Negative Feedback Amplifier
    4. 7.4 Merits (General Characteristics) of Negative Feedback Amplifiers
    5. 7.5 Voltage Amplifier (Voltage Series Feedback Amplifier)
    6. 7.6 Voltage Shunt Feedback Amplifier (Transresistance Amplifier)
    7. 7.7 Current Series Feedback Amplifier (Transconductance Amplifier)
    8. 7.8 Current Shunt Feedback Amplifier Current (Series-Shunt) Amplifier
    9. 7.9 Voltage and Current Series Feedback Amplifiers (Practical Circuit)
    10. Summary
    11. Questions for Practice
    12. Multiple Choice Questions
  13. Chapter 8 Oscillators
    1. 8.1 Introduction
    2. 8.2 Fundamental Concepts of Sinusoidal Oscillators
    3. 8.3 Transistor RC Phase-Shift Oscillator
    4. 8.4 FET-RC Phase-Shift Oscillator
    5. 8.5 Wien Bridge Oscillator Circuit Using Operational Amplifier
    6. 8.6 LC Oscillators (High-Frequency Oscillators)
    7. 8.7 Colpitts Oscillator Using FET
    8. 8.8 Clapp Oscillator
    9. 8.9 Hartley Oscillator Circuit
    10. 8.10 Tuned Collector Oscillator
    11. 8.11 Tuned Drain Oscillator Circuit
    12. 8.12 Crystal Oscillators
    13. 8.13 UJT Oscillator Circuit
    14. Summary
    15. Questions for Practice
    16. Multiple Choice Questions
  14. Chapter 9 FET and MOSFET Amplifiers
    1. 9.1 Amplifier Gain Using Decibels
    2. 9.2 Basic Concepts of FET Amplifier
    3. 9.3 Common Source FET Amplifier
    4. 9.4 Resistance Capacitance Coupled FET Amplifier
    5. 9.5 Common Gate FET Amplifier Analysis
    6. 9.6 Common Drain FET Amplifier (Source Follower )
    7. 9.7 Frequency Response of Single-Stage Amplifier
    8. 9.8 Basic Concepts of MOSFET Amplifiers
    9. 9.9 Common Source MOSFET Amplifier
    10. 9.10 Source Follower Using MOSFET
    11. 9.11 Common Gate MOSFET Amplifier
    12. Summary
    13. Questions for Practice
    14. Multiple Choice Questions
  15. Chapter 10 Multistage (Cascaded) Amplifiers
    1. 10.1 Concepts of Cascaded (Multistage) Amplifiers
    2. 10.2 Different Coupling Schemes Used in Amplifiers
    3. 10.3 N-Stage Cascaded Amplifier
    4. 10.4 Cascaded RC-Coupled BJT Amplifiers
    5. 10.5 Cascaded RC-Coupled FET Amplifiers
    6. 10.6 Frequency Response Characteristic of RC-Coupled Amplifier
    7. 10.7 Equivalent Circuits of Cascaded RC-Coupled Transistor Amplifiers
    8. 10.8 (CE + CC) Transistor Amplifier
    9. 10.9 (CS + CD) FET Amplifier
    10. 10.10 Cascode (CE + CB) Amplifier
    11. 10.11 Cascode (CS + CG) Amplifier
    12. 10.12 (CC + CE) Transistor Amplifier
    13. 10.13 (CD + CS) JFET Amplifier
    14. 10.14 Cascading in Operational Amplifiers
    15. 10.15 Darlington Pair (Compound Transistor Configurations)
    16. 10.16 High Input Resistance Transistor Circuits (Darlington Pair)
    17. 10.17 Difference Amplifiers
    18. Summary
    19. Questions for Practice
    20. Multiple Choice Questions
  16. Chapter 11 Large Signal (Power) Amplifiers
    1. 11.1 Class-A, Class-B and Class-C Amplifiers
    2. 11.2 Class-A Power Amplifier
    3. 11.3 Transformer-Coupled Audio Power Amplifier
    4. 11.4 Class-A Push-Pull Amplifier
    5. 11.5 Class-B Push-Pull Amplifiers
    6. 11.6 Transformer-Less Push-Pull Amplifier
    7. 11.7 Crossover Distortion
    8. 11.8 Class-AB Power Amplifier
    9. 11.9 Class-C Power Amplifier
    10. 11.10 Thermal Modelling and Heat Sinks
    11. 11.11 Advanced Power Amplifiers
    12. 11.12 Distortion in Amplifiers
    13. Summary
    14. Questions for Practice
    15. Multiple Choice Questions
  17. Chapter 12 High Frequency Transistor Circuits
    1. 12.1 Transistor at High Frequency Input Signals
    2. 12.2 Hybrid-π Model for HF Transistors
    3. 12.3 Determination of Hybrid-π Circuit Parameters
    4. 12.4 Current Gain of CE Amplifier with Resistive Load
    5. 12.5 Short Circuit Current Gain AI and fB of CE Transistor Amplifier
    6. 12.6 High Frequency Equivalent Circuit of JFET
    7. 12.7 High Frequency Equivalent Circuit of MOSFET
    8. Summary
    9. Questions for Practice
    10. Multiple Choice Questions
  18. Chapter 13 Tuned Amplifiers
    1. 13.1 Introduction
    2. 13.2 Basic Concepts of Tuned Amplifiers
    3. 13.3 Performance of Parallel Resonant Circuits
    4. 13.4 Single-Tuned Capacitance-Coupled (Direct-Coupled) Amplifier
    5. 13.5 Single-Tuned Capacitance-Coupled CE Transistor Amplifier
    6. 13.6 Single-Tuned (Transformer) Inductively Coupled Amplifier
    7. 13.7 Tapped Single-Tuned Capacitance-Coupled Amplifier (Inductive Tap Between Amplifiers for Optimum Power Transfer)
    8. 13.8 Amplifiers with Multiple Tuned Circuits
    9. 13.9 Double-Tuned Amplifier
    10. 13.10 Applications of Tuned Amplifiers
    11. 13.11 Synchronously Tuned Amplifier
    12. 13.12 Stagger-Tuned Amplifier
    13. 13.13 Stabilisation Techniques
    14. 13.14 Radio Frequency Amplifiers (Tuned Amplifier)
    15. 13.15 Wideband Amplifiers
    16. 13.16 Applications of Wideband Amplifiers
    17. Summary
    18. Questions for Practice
    19. Multiple Choice Questions
  19. Chapter 14 Switching and IC Voltage Regulators
    1. 14.1 Introduction
    2. 14.2 Three-Terminal IC Voltage Regulators
    3. 14.3 IC 723 Voltage Regulators
    4. 14.4 DC-to-DC Converters
    5. 14.5 Voltage Multiplier Circuits
    6. 14.6 Switching Voltage Regulators
    7. 14.7 Uninterruptible Power Supply (UPS)
    8. 14.8 Switch Mode Power Supply (SMPS)
    9. Summary
    10. Questions for Practice
    11. Multiple Choice Questions
  20. Chapter 15 Special Purpose Electronic Devices
    1. 15.1 Tunnel Diode
    2. 15.2 Semiconductor Photo Diode
    3. 15.3 Varactor Diode
    4. 15.4 Schottky Barrier Diode
    5. 15.5 Light Emitting Diode
    6. 15.6 Silicon Control Rectifier
    7. Summary
    8. Questions for Practice
    9. Multiple Choice Questions
  21. Acknowledgements
  22. Copyright

Product information

  • Title: Electronic Circuit Analysis
  • Author(s): B. Visvesvara Rao, K. Raja Rajeswari, P. Chalam Raju Pantulu, K. Bhaskara Rama Murty
  • Release date: August 2011
  • Publisher(s): Pearson India
  • ISBN: 9788131754283