Book description
This practical guide will teach you how deep learning (DL) can be used to solve complex real-world problems.
Key Features
- Explore deep reinforcement learning (RL), from the first principles to the latest algorithms
- Evaluate high-profile RL methods, including value iteration, deep Q-networks, policy gradients, TRPO, PPO, DDPG, D4PG, evolution strategies and genetic algorithms
- Keep up with the very latest industry developments, including AI-driven chatbots
What you will learn
- Understand the DL context of RL and implement complex DL models
- Learn the foundation of RL: Markov decision processes
- Evaluate RL methods including Cross-entropy, DQN, Actor-Critic, TRPO, PPO, DDPG, D4PG and others
- Discover how to deal with discrete and continuous action spaces in various environments
- Defeat Atari arcade games using the value iteration method
- Create your own OpenAI Gym environment to train a stock trading agent
- Teach your agent to play Connect4 using AlphaGo Zero
- Explore the very latest deep RL research on topics including AI-driven chatbots
Book Description
Recent developments in reinforcement learning (RL), combined with deep learning (DL), have seen unprecedented progress made towards training agents to solve complex problems in a human-like way. Google's use of algorithms to play and defeat the well-known Atari arcade games has propelled the field to prominence, and researchers are generating new ideas at a rapid pace.
Deep Reinforcement Learning Hands-On is a comprehensive guide to the very latest DL tools and their limitations. You will evaluate methods including Cross-entropy and policy gradients, before applying them to real-world environments. Take on both the Atari set of virtual games and family favorites such as Connect4. The book provides an introduction to the basics of RL, giving you the know-how to code intelligent learning agents to take on a formidable array of practical tasks. Discover how to implement Q-learning on 'grid world' environments, teach your agent to buy and trade stocks, and find out how natural language models are driving the boom in chatbots.
Style and approach
Deep Reinforcement Learning Hands-On explains the art of building self-learning agents using algorithms and practical examples. Experiment with famous examples, such as Google's defeat of well-known Atari arcade games.
Who this book is for
Some fluency in Python is assumed. Basic deep learning (DL) approaches should be familiar to readers and some practical experience in DL will be helpful. This book is an introduction to deep reinforcement learning (RL) and requires no background in RL.
Table of contents
-
Deep Reinforcement Learning Hands-On
- Table of Contents
- Deep Reinforcement Learning Hands-On
- Contributors
- Preface
- 1. What is Reinforcement Learning?
- 2. OpenAI Gym
- 3. Deep Learning with PyTorch
- 4. The Cross-Entropy Method
- 5. Tabular Learning and the Bellman Equation
- 6. Deep Q-Networks
- 7. DQN Extensions
- 8. Stocks Trading Using RL
- 9. Policy Gradients – An Alternative
- 10. The Actor-Critic Method
- 11. Asynchronous Advantage Actor-Critic
- 12. Chatbots Training with RL
- 13. Web Navigation
- 14. Continuous Action Space
- 15. Trust Regions – TRPO, PPO, and ACKTR
- 16. Black-Box Optimization in RL
- 17. Beyond Model-Free – Imagination
- 18. AlphaGo Zero
- Other Books You May Enjoy
- Index
Product information
- Title: Deep Reinforcement Learning Hands-On
- Author(s):
- Release date: June 2018
- Publisher(s): Packt Publishing
- ISBN: 9781788834247
You might also like
book
Grokking Deep Reinforcement Learning
We all learn through trial and error. We avoid the things that cause us to experience …
book
Deep Reinforcement Learning Hands-On - Second Edition
Revised and expanded to include multi-agent methods, discrete optimization, RL in robotics, advanced exploration techniques, and …
book
Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence
“The authors’ clear visual style provides a comprehensive look at what’s currently possible with artificial neural …
book
Generative Deep Learning, 2nd Edition
Generative AI is the hottest topic in tech. This practical book teaches machine learning engineers and …