Diving Deep into Neural Networks

In this chapter, we will explore the different modules of deep learning architectures that are used to solve real-world problems. In the previous chapter, we used low-level operations of PyTorch to build modules such as a network architecture, a loss function, and an optimizer. In this chapter, we will explore some of the important components of neural networks required to solve real-world problems, along with how PyTorch abstracts away a lot of complexity by providing a lot of high-level functions. Towards the end of the chapter, we will build algorithms that solve real-world problems such as regression, binary classification, and multi-class classification.

In this chapter, we will go through following topics: ...

Get Deep Learning with PyTorch now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.