Book description
Explore architectural approaches to building Data Lakes that ingest, index, manage, and analyze massive amounts of data using Big Data technologies
About This Book
- Comprehend the intricacies of architecting a Data Lake and build a data strategy around your current data architecture
- Efficiently manage vast amounts of data and deliver it to multiple applications and systems with a high degree of performance and scalability
- Packed with industry best practices and use-case scenarios to get you up-and-running
Who This Book Is For
This book is for architects and senior managers who are responsible for building a strategy around their current data architecture, helping them identify the need for a Data Lake implementation in an enterprise context. The reader will need a good knowledge of master data management and information lifecycle management, and experience of Big Data technologies.
What You Will Learn
- Identify the need for a Data Lake in your enterprise context and learn to architect a Data Lake
- Learn to build various tiers of a Data Lake, such as data intake, management, consumption, and governance, with a focus on practical implementation scenarios
- Find out the key considerations to be taken into account while building each tier of the Data Lake
- Understand Hadoop-oriented data transfer mechanism to ingest data in batch, micro-batch, and real-time modes
- Explore various data integration needs and learn how to perform data enrichment and data transformations using Big Data technologies
- Enable data discovery on the Data Lake to allow users to discover the data
- Discover how data is packaged and provisioned for consumption
- Comprehend the importance of including data governance disciplines while building a Data Lake
In Detail
A Data Lake is a highly scalable platform for storing huge volumes of multistructured data from disparate sources with centralized data management services. This book explores the potential of Data Lakes and explores architectural approaches to building data lakes that ingest, index, manage, and analyze massive amounts of data using batch and real-time processing frameworks. It guides you on how to go about building a Data Lake that is managed by Hadoop and accessed as required by other Big Data applications.
This book will guide readers (using best practices) in developing Data Lake's capabilities. It will focus on architect data governance, security, data quality, data lineage tracking, metadata management, and semantic data tagging. By the end of this book, you will have a good understanding of building a Data Lake for Big Data.
Data Lakes can be viewed as having three capabilities - intake, management, and consumption. This book will take readers through each of these processes of developing a Data Lake and guide them (using best practices) in developing these capabilities. It will also explore often ignored, yet crucial considerations while building Data Lakes, with the focus on how to architect data governance, security, data quality, data lineage tracking, metadata management, and semantic data tagging. By the end of this book, you will have a good understanding of building a Data Lake for Big Data. You will be able to utilize Data Lakes for efficient and easy data processing and analytics.
Style and approach
Data Lake Development with Big Data provides architectural approaches to building a Data Lake. It follows a use case-based approach where practical implementation scenarios of each key component are explained. It also helps you understand how these use cases are implemented in a Data Lake. The chapters are organized in a way that mimics the sequential data flow evidenced in a Data Lake.
Table of contents
-
Data Lake Development with Big Data
- Table of Contents
- Data Lake Development with Big Data
- Credits
- About the Authors
- Acknowledgement
- About the Reviewer
- www.PacktPub.com
- Preface
-
1. The Need for Data Lake
- Before the Data Lake
- Need for Data Lake
- Defining Data Lake
- Key benefits of Data Lake
- Challenges in implementing a Data Lake
- When to go for a Data Lake implementation
- Data Lake architecture
- Summary
-
2. Data Intake
- Understanding Intake tier zones
- Architectural guidance
- Summary
-
3. Data Integration, Quality, and Enrichment
- Introduction to the Data Management Tier
-
Understanding Data Integration
- Introduction to Data Integration
- Practical Data Integration scenarios
- The workings of Data Integration
- Traditional Data Integration versus Data Lake
- Big Data tools and technologies
- Summary
- 4. Data Discovery and Consumption
- 5. Data Governance
- Index
Product information
- Title: Data Lake Development with Big Data
- Author(s):
- Release date: November 2015
- Publisher(s): Packt Publishing
- ISBN: 9781785888083
You might also like
book
Data Lake Maturity Model
Data is changing everything. Many industries today are being fundamentally transformed through the accumulation and analysis …
book
Cleaning Up the Data Lake with an Operational Data Hub
The data lake was once heralded as the answer to the flood of big data that …
book
Big Data
Presenting the contributions of leading experts in their respective fields, this book bridges the gap between …
book
Big Data
Big Data teaches you to build big data systems using an architecture that takes advantage of …