Chapter 14
Analyzing Second-Order Circuits
In This Chapter
Focusing on second-order differential equations
Analyzing an RLC series circuit
Analyzing an RLC parallel circuit
Second-order circuits consist of capacitors, inductors, and resistors. In math terms, circuits that have both an inductor and a capacitor are described by second-order differential equations — hence the name second-order circuits. This chapter clues you in to what’s unique about analyzing second-order circuits and then walks you through the analysis of an RLC (resistor, inductor, capacitor) series circuit and an RLC parallel circuit.
For a refresher on second-order differential equations, refer to your textbook or Differential Equations For Dummies by Steven Holzner (Wiley).
Examining Second-Order Differential Equations with Constant Coefficients
If you can use a second-order differential equation to describe the circuit you’re looking at, then you’re dealing with a second-order circuit. Circuits that include an inductor, capacitor, and resistor connected in series or in parallel are second-order circuits. Figure 14-1 shows second-order circuits driven by an input source, or forcing function.
Illustration ...
Get Circuit Analysis For Dummies now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.