Video description
Imagine cooking a stew with a single ingredient or growing a country garden with a single type of flower. One-dimensional efforts like these yield bland and boring results. Now imagine staffing a data science team with only PhDs in machine learning. In spite of the impressive pedigree, the result would be similar: bland, boring, and, possibly worse, ineffective.
But if not just data people, then who?
Data scientist Paco Nathan answers that question and more in this video on how to build a data science team. Cited in 2015 as one of the "Top 30 People in Big Data and Analytics" by Innovation Enterprise, Nathan offers insider tips gleaned from his 30+ years in technology.
- Assess the need for a data science team: Advantages, disadvantages, and how big should it be?
- Identify internal corporate sponsors to get buy-in for the data science approach
- Manage the transition of the data science team into the organization
- Discover how to identify and hire the right people for the role
- Learn best practices for setting up, organizing, and managing the team
- Practice cultivating the team and their professional growth
- Perform team gap analysis and workflow analysis
- Absorb invaluable Dos and Don’ts
Publisher resources
Product information
- Title: Building Data Science Teams
- Author(s):
- Release date: November 2015
- Publisher(s): O'Reilly Media, Inc.
- ISBN: 9781491940983
You might also like
book
Building Data Science Teams
As data science evolves to become a business necessity, the importance of assembling a strong and …
book
Leading Data Science Teams
Compared to other functions of an organization, data science is highly speculative. Data science teams are …
video
Building a Data Science Culture
Featuring a collection of presentations from Strata + Hadoop World conferences, this video compilation walks you …
video
Building Data Science Infrastructure
Presented by Caitlin Hudon – Lead Data Scientist at OnlineMedEd Before AI, before machine learning and …