1.5 Means and variances
1.5.1 Expectations
Suppose that m is a discrete random variable and that the series
is absolutely convergent, that is such that
Then the sum of the original series is called the mean or expectation of the random variable, and we denote it
A motivation for this definition is as follows. In a large number N of trials, we would expect the value m to occur about p(m)N times, so that the sum total of the values that would occur in these N trials (counted according to their multiplicity) would be about
so that the average value should be about
Thus, we can think of expectation as being, at least in some circumstances, a form of very long term average. On the other hand, there are circumstances in which it is difficult to believe in the possibility of arbitrarily large numbers of trials, so this interpretation is not always available. It can also be thought of as giving the position of the ‘centre of gravity’ of the distribution imagined as a distribution of mass spread ...
Get Bayesian Statistics: An Introduction, 4th Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.