7.1 INTRODUCTION

Transform coders make use of unitary transforms (e.g., DFT, DCT, etc.) for the time/frequency analysis section of the audio coder shown in Figure 1.1. Many transform coding schemes for wideband and high-fidelity audio have been proposed, starting with some of the earliest perceptual audio codecs. For example, in the mid-1980s, Krahe applied psychoacoustic bit allocation principles to a transform coding scheme [Krah85] [Krah88]. Schroeder [Schr86] later extended these ideas into multiple adaptive spectral audio coding (MSC). The MSC utilizes a 1024-point DFT, then groups coefficients into 26 subbands, inspired by the critical bands of the ear. This chapter gives overview of algorithms that were proposed for transform coding of high-fidelity audio following the early work of Schroeder [Schr86].

The Chapter is organized as follows. Sections 7.2 through 7.5 describe in some detail the transform coding algorithms proposed by Brandenburg, Johnston, and Mahieux [Bran87b] [John88a] [Mahi89] [Bran90]. Most of this research became connected with the MPEG standardization, and the ISO/IEC eventually clustered these algorithms into a single candidate algorithm called adaptive spectral entropy coding (ASPEC) [Bran91] of high quality music signals. The ASPEC algorithm (Section 7.6) has become part of the ISO/IEC MPEG-1 [ISOI92] and the MPEG-2/BC-LSF [ISOI94a] audio coding standards. Sections 7.7 and 7.8 are concerned with two transform coefficient substitution schemes, namely ...

Get Audio Signal Processing and Coding now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.