Atomic And Nuclear Physics

Book description

Atomic and Nuclear Physics describes the basics of atomic and nuclear physics, related phenomena, and the physics of nuclear reactors and the Instruments and applications for the same. The flow of the chapters in the book gradually moves from atomic physics, then to quantum physics, and finally to nuclear physics.

Table of contents

  1. Cover
  2. Title Page
  3. Contents
  4. Dedication
  5. Preface
  6. 1. Basic Concepts
    1. 1.1 Electric Charge
    2. 1.2 Electric Forces and Fields
    3. 1.3 Blackbody Radiation
    4. 1.4 Energy and Pressure Relationship in a Molecular Model of Gas
    5. 1.5 Maxwell's Velocity Distribution
    6. 1.6 Boltzmann's Distribution
    7. 1.7 Law of Equipartition of Energy
    8. 1.8 Maxwell's Equations
    9. 1.9 The Size of Atoms
    10. 1.10 Operators in Quantum Mechanics
    11. 1.11 Time-Dependent Schrödinger's Equation
    12. 1.12 Free-Particle Wave Function
    13. 1.13 Barrier Penetration or Tunneling
    14. 1.14 The Mole-Avogadro Number
    15. 1.15 The Electromagnetic Wave Spectrum
  7. 2. Special Theory of Relativity
    1. 2.1 Introduction
    2. 2.2 The Galilean Transformation and the Newtonian Relativity
    3. 2.3 Electromagnetism, the Speed of Light and the Michelson-Morley Experiment
    4. 2.4 Postulates of Special Theory of Relativity
    5. 2.5 Derivation of the Lorentz Transformation Equations
    6. 2.6 Pre-Relativistic Physics
    7. 2.7 Equations of Electromagnetism
    8. 2.8 Principle of Special Theory of Relativity
    9. 2.9 Space–Time Diagrams and Lorentz Transformations
    10. 2.10 Space–Time Interval
    11. 2.11 Minkowski Space–Time
    12. 2.12 The Null Cone
    13. 2.13 Consequences of the Special Theory of Relativity
    14. 2.14 Velocity Composition Law
    15. 2.15 The Doppler Effect
    16. 2.16 Mass–Energy Equivalence
    17. 2.17 The Invariance of Maxwell's Equations and the Transformation of Electric and Magnetic Fields
    18. 2.18 Tachyons and Time Travel
    19. Summary
    20. Review Questions
    21. Problems
  8. 3. Atomic Structure
    1. 3.1 Introduction
    2. 3.2 The Rutherford Model of Atom
    3. 3.3 Scattering Cross-section
    4. 3.4 Emission and Absorption Spectra
    5. 3.5 Bohr's Model of Hydrogen Atom
    6. 3.6 Quantum Numbers
    7. 3.7 Zeeman Effect
    8. 3.8 Electron Spin
    9. 3.9 Stern-Gerlach Experiment
    10. 3.10 Pauli's Exclusion Principle
    11. 3.11 Aufbau Principle
    12. Summary
    13. Rreview Questions
    14. Problems
  9. 4 Introduction To X-Rays
    1. 4.1 Historical Background
    2. 4.2 X-rays as a Part of Electromagnetic Wave Spectrum
    3. 4.3 X-ray Spectra
    4. 4.4 Band Spectra
    5. 4.5 Absorption of X-rays
    6. 4.6 Moseley's Law
    7. 4.7 Selective Excitation and Absorption Edges
    8. 4.8 Diffraction of X-rays
    9. 4.9 Compton Scattering
    10. 4.10 X-ray Detectors
    11. 4.11 X-ray Imaging
    12. 4.12 X-rays from Synchrotron
    13. Summary
    14. Review Questions
    15. Problems
  10. 5. Introduction to Quantum Mechanics
    1. 5.1 Introduction
    2. 5.2 Photoelectric Effect
    3. 5.3 The de Broglie Hypothesis
    4. 5.4 Davisson–Germer Experiment
    5. 5.5 Bragg's Law
    6. 5.6 Wave Velocity
    7. 5.7 Group Velocity
    8. 5.8 Heisenberg's Uncertainty Principle
    9. 5.9 Quantum Wave Function
    10. 5.10 Schröedinger's Equation
    11. 5.11 Energy of a Particle in a Box
    12. 5.12 Normalisation for Particle in a Box
    13. 5.13 Tunneling Through a Potential Barrier
    14. Summary
    15. Review Questions
    16. Problems
  11. 6. Lasers
    1. 6.1 LASER (Light Amplification by Stimulated Emission of Radiation)
    2. 6.2 Properties of Laser Light
    3. 6.3 Light Amplification Techniques
    4. 6.4 Energising the Amplifying Medium
    5. 6.5 Types of Lasers
    6. 6.6 Applications of Laser
    7. Summary
    8. Review Questions
  12. 7. Radioactivity
    1. 7.1 Introduction
    2. 7.2 Natural Radioactivity
    3. 7.3 Radioactive Half-Life
    4. 7.4 Successive Radioactive Growth and Decay
    5. 7.5 Radioactive Equilibrium
    6. 7.6 Transient Equilibrium
    7. 7.7 Radioactive Series
    8. 7.8 Units of Radioactivity
    9. 7.9 Uses of Radioactive Radiation
    10. 7.10 Isotopes
    11. Summary
    12. Review Questions
    13. Problems
  13. 8. Radioactive Decay Theory
    1. 8.1 Introduction
    2. 8.2 β-decay Probability
    3. 8.3 Matrix Elements
    4. 8.4 Deviations in Fermi-Kurie Plots
    5. 8.5 Theory of Alpha Decay
    6. 8.6 Theory of Gamma Decay
    7. Summary
    8. Review Questions
  14. 9. Interaction of Radiation with Matter
    1. 9.1 Penetration of Radiation in Matter
    2. 9.2 Interaction of Heavy-Charged Particles with Matter
    3. 9.3 Interaction of Gamma Rays with Matter
    4. 9.4 Interactions of Electrons with Matter
    5. 9.5 Interaction of Neutrons with Matter
    6. Summary
    7. Review Questions
    8. Problems
  15. 10. Atomic Inner-Shell Excitation and De-Excitation Processes
    1. 10.1 Atomic Excitation and Ionization
    2. 10.2 Choice of Projectiles for Inner-shell Vacancy Creation
    3. 10.3 Charged Particle Excitation
    4. 10.4 Photon Excitation
    5. 10.5 Excitation Efficiency
    6. 10.6 Atomic Fluorescence Yields
    7. 10.7 Radiative Transitions
    8. 10.8 Non-Radiative Transitions
    9. 10.9 Semi-Empirical Relation for K-shell Fluorescence Yields
    10. 10.10 Subshell Yield Notations
    11. 10.11 L-Shell Fluorescence Yields
    12. 10.12 Primary L-subshell Fluorescent Excitation
    13. 10.13 M-Shell Fluorescence Yields
    14. 10.14 K- and L-Shell X-ray Spectra
    15. 10.15 Measurement of Relative Intensity of X-ray Lines
    16. 10.16 Determination of Self-Absorption Correction Factor β
    17. Summary
    18. Review Questions
  16. 11. Radiation Detectors
    1. 11.1 Types of Detectors
    2. 11.2 Gaseous Detectors
    3. 11.3 Quenching in Gaseous Detectors
    4. 11.4 Escape Peak Phenomenon
    5. 11.5 Solid-State Detectors
    6. 11.6 Visual Detection Techniques
    7. 11.7 Neutron Detectors
    8. 11.8 Detection of Neutrinos
    9. Summary
    10. Review Questions
  17. 12. The Structure of Nucleus
    1. 12.1 Introduction
    2. 12.2 Discovery of the Neutron
    3. 12.3 Nuclear Mass
    4. 12.4 Mass Defect
    5. 12.5 Binding Energy of Nucleus
    6. 12.6 Magic Numbers
    7. 12.7 Shell Model
    8. 12.8 The Harmonic Oscillator
    9. 12.9 The Spin-Orbit Interaction
    10. 12.10 Liquid Drop Model of Nucleus
    11. 12.11 Fermi Gas Model of Nucleus
    12. 12.12 Collective Model of Nucleus
    13. 12.13 Comparative Features of the Nuclear Models
    14. Summary
    15. Review Questions
  18. 13. Nuclear Forces
    1. 13.1 Introduction
    2. 13.2 Fundamental Forces
    3. 13.3 Two-Nucleon System
    4. 13.4 Low Energy n-p Scattering
    5. 13.5 Feynman Diagrams
    6. 13.6 Meson Theory of Nuclear Forces
    7. 13.7 The Strong Force
    8. 13.8 The Electromagnetic Force
    9. 13.9 The Weak Force
    10. 13.10 The Exchange-Particle Model
    11. 13.11 Conservation Laws
    12. 13.12 Types of Quarks
    13. 13.13 The Quark Model of Exchange Particles
    14. 13.14 Colour and Quantum Chromo Dynamics (QCD)
    15. Summary
    16. Review Questions
  19. 14. Nuclear Fission and Fusion
    1. 14.1 Introduction
    2. 14.2 Nuclear Reactions
    3. 14.3 Artificial Nuclear Transmutations
    4. 14.4 Nuclear Cross-sections
    5. 14.5 Nuclear Fission
    6. 14.6 Nuclear Fusion
    7. 14.7 Controlled Nuclear Fission
    8. 14.8 Nuclear Bomb
    9. 14.9 Nuclear Fusion or Hydrogen Bomb
    10. 14.10 Neutron Bomb
    11. Summary
    12. Review Questions
    13. Problems
  20. 15. Nuclear Reactions with Neutrons
    1. 15.1 Introduction
    2. 15.2 Fissionable Materials
    3. 15.3 Yield and Mass Distribution of Fission Fragments
    4. 15.4 Energy Distribution of Fission Fragments
    5. 15.5 Energy Release from Fission
    6. 15.6 Prompt Neutrons
    7. 15.7 Delayed Neutrons
    8. 15.8 Moderation of Neutrons
    9. 15.9 Thermal Neutrons
    10. 15.10 Resonance Escape Probability
    11. 15.11 Effective Resonance Integral
    12. 15.12 Thermal Neutron Diffusion and Diffusion Equation
    13. 15.13 Coherent Scattering of Neutrons from Ortho- and Para-hydrogen Molecules
    14. Summary
    15. Review Questions
  21. 16. Nuclear Reactor Physics
    1. 16.1 Introduction
    2. 16.2 Nuclear Power Reactors
    3. 16.3 Classification of Nuclear Reactors
    4. 16.4 Diffusion of Thermal Neutrons from a Plane Source
    5. 16.5 Diffusion of Thermal Neutrons from a Point Source
    6. 16.6 Thermal Diffusion Length
    7. 16.7 Fast Neutron Diffusion and Fermi Age Equation
    8. 16.8 Diffusion Equation in a Thermal Reactor
    9. 16.9 Thermal Neutron Source from Fermi Age Equation
    10. 16.10 Critical Equation and Reactor Buckling
    11. 16.11 The Non-leakage Factors
    12. 16.12 The Non-steady Nuclear Reactor
    13. 16.13 Time-Dependent Reactor Equation
    14. 16.14 The Inhour Equation
    15. 16.15 Conditions Affecting the Reactivity
    16. Summary
    17. Review Questions
  22. 17. Elementary Particles and Nucleon Structure
    1. 17.1 Introduction
    2. 17.2 Photons and Gravitons
    3. 17.3 Electron
    4. 17.4 Proton
    5. 17.5 Neutron
    6. 17.6 Positron
    7. 17.7 Antiproton
    8. 17.8 Antineutron
    9. 17.9 Neutrino and Antineutrino
    10. 17.10 π (Pi)-Mesons or Pions
    11. 17.11 Muons or μ-Mesons
    12. 17.12 K-Mesons or Kaons
    13. 17.13 Eta-Meson
    14. 17.14 Omega-Meson
    15. 17.15 Λ0-Particle
    16. 17.16 Σ-particles
    17. 17.17 Ξ-Particles
    18. 17.18 Ω–-Hyperon
    19. 17.19 Classification of Elementary Particles
    20. 17.20 Quantum Numbers of Elementary Particles
    21. 17.21 Hypercharge
    22. 17.22 Strange Particles
    23. 17.23 Hypernuclei or Hyperfragments
    24. 17.24 Nucleon Structure
    25. Summary
    26. Review Questions
  23. 18. Cosmic Rays
    1. 18.1 Introduction
    2. 18.2 Discovery and Early Research
    3. 18.3 Detection of Cosmic Rays
    4. 18.4 Properties of Cosmic Rays
    5. 18.5 Composition
    6. 18.6 Very High Energy Cosmic Rays
    7. 18.7 Presence in the Solar System
    8. 18.8 Van-Allen Radiation Belts
    9. 18.9 Origin of Cosmic Rays
    10. 18.10 Antimatter
    11. Summary
    12. Review Questions
  24. 19. Radiation Safety and Health Physics
    1. 19.1 Introduction
    2. 19.2 Penetration Power in Living Cells
    3. 19.3 Radiation Damage to the Cell
    4. 19.4 Effect of Radiation on Cells
    5. 19.5 Measurement of Ionizing Radiation
    6. 19.6 Measurement of Biological Damage
    7. 19.7 Linear Energy Transfer (LET)
    8. 19.8 Radiation Risk
    9. 19.9 Radiation Dosimetery
    10. 19.10 Security of Radioactive Material
    11. 19.11 Radioactive Waste Management
    12. Summary
    13. Review Questions
  25. 20. Instruments and Applications
    1. 20.1 Electron Microscope
    2. 20.2 Transmission Electron Microscope
    3. 20.3 Scanning Electron Microscope
    4. 20.4 X-ray Fluorescence Spectrometer
    5. 20.5 XRF Spectrometers
    6. 20.6 Multichannel Analyzer
    7. 20.7 Wavelength and Energy Dispersive Spectrometers
    8. 20.8 Electron Micro-Probe Analyzer
    9. 20.9 The Atomic Force Microscope (AFM)
    10. 20.10 Electron Spin Resonance
    11. 20.11 Nuclear Magnetic Resonance
    12. 20.12 Nuclear Tracer Techniques in Medicine
    13. 20.13 Magnetic Resonance Imaging
    14. 20.14 Radiology
    15. 20.15 Diagnostic Radiology
    16. 20.16 Computed Axial Tomography (CAT Scanning)
    17. 20.17 Radiation Therapy
    18. Summary
    19. Review Questions
  26. Appendices
    1. I. Some Mathematical Tools
    2. II. Fundamental Physical Constants
    3. III. Greek Alphabets
    4. IV. Standard Notations of Units of Measure
    5. V. The SI Units
    6. VI. Conversion Factors and Other Important Units
    7. VII. Glossary
  27. Acknowledgements
  28. Copyright

Product information

  • Title: Atomic And Nuclear Physics
  • Author(s): Shatendra K. Sharma
  • Release date: April 2008
  • Publisher(s): Pearson Education India
  • ISBN: 9788131772607