Book description
Intelligently connect data points and gain a deeper understanding of environmental problems through hands-on Geospatial Data Science case studies written in Python The book includes colored images of important concepts
Key Features
- Learn how to integrate spatial data and spatial thinking into traditional data science workflows
- Develop a spatial perspective and learn to avoid common pitfalls along the way
- Gain expertise through practical case studies applicable in a variety of industries with code samples that can be reproduced and expanded
Book Description
Data scientists, when presented with a myriad of data, can often lose sight of how to present geospatial analyses in a meaningful way so that it makes sense to everyone. Using Python to visualize data helps stakeholders in less technical roles to understand the problem and seek solutions. The goal of this book is to help data scientists and GIS professionals learn and implement geospatial data science workflows using Python.
Throughout this book, you’ll uncover numerous geospatial Python libraries with which you can develop end-to-end spatial data science workflows. You’ll learn how to read, process, and manipulate spatial data effectively. With data in hand, you’ll move on to crafting spatial data visualizations to better understand and tell the story of your data through static and dynamic mapping applications. As you progress through the book, you’ll find yourself developing geospatial AI and ML models focused on clustering, regression, and optimization. The use cases can be leveraged as building blocks for more advanced work in a variety of industries.
By the end of the book, you’ll be able to tackle random data, find meaningful correlations, and make geospatial data models.
What you will learn
- Understand the fundamentals needed to work with geospatial data
- Transition from tabular to geo-enabled data in your workflows
- Develop an introductory portfolio of spatial data science work using Python
- Gain hands-on skills with case studies relevant to different industries
- Discover best practices focusing on geospatial data to bring a positive change in your environment
- Explore solving use cases, such as traveling salesperson and vehicle routing problems
Who this book is for
This book is for you if you are a data scientist seeking to incorporate geospatial thinking into your workflows or a GIS professional seeking to incorporate data science methods into yours. You’ll need to have a foundational knowledge of Python for data analysis and/or data science.
Table of contents
- Applied Geospatial Data Science with Python
- Acknowledgments
- Contributors
- About the author
- About the reviewer
- Preface
- Part 1:The Essentials of Geospatial Data Science
- Chapter 1: Introducing Geographic Information Systems and Geospatial Data Science
- Chapter 2: What Is Geospatial Data and Where Can I Find It?
- Chapter 3: Working with Geographic and Projected Coordinate Systems
- Chapter 4: Exploring Geospatial Data Science Packages
- Part 2: Exploratory Spatial Data Analysis
- Chapter 5: Exploratory Data Visualization
- Chapter 6: Hypothesis Testing and Spatial Randomness
- Chapter 7: Spatial Feature Engineering
- Part 3: Geospatial Modeling Case Studies
- Chapter 8: Spatial Clustering and Regionalization
- Chapter 9: Developing Spatial Regression Models
- Chapter 10: Developing Solutions for Spatial Optimization Problems
- Chapter 11: Advanced Topics in Spatial Data Science
- Index
- Other Books You May Enjoy
Product information
- Title: Applied Geospatial Data Science with Python
- Author(s):
- Release date: February 2023
- Publisher(s): Packt Publishing
- ISBN: 9781803238128
You might also like
book
Practical Data Science with Python
Learn to effectively manage data and execute data science projects from start to finish using Python …
book
Python for Data Science
Python is an ideal choice for accessing, manipulating, and gaining insights from data of all kinds. …
book
Python for Geospatial Data Analysis
In spatial data science, things in closer proximity to one another likely have more in common …
book
Learning Geospatial Analysis with Python - Fourth Edition
Harness the powerful Python programming language to navigate the realms of geographic information systems, remote sensing, …