Book description
Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets.In Algorithms and Data Structures for Massive Datasets you will learn:
- Probabilistic sketching data structures for practical problems
- Choosing the right database engine for your application
- Evaluating and designing efficient on-disk data structures and algorithms
- Understanding the algorithmic trade-offs involved in massive-scale systems
- Deriving basic statistics from streaming data
- Correctly sampling streaming data
- Computing percentiles with limited space resources
Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You’ll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there’s no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you’ll find the sweet spot of saving space without sacrificing your data’s accuracy.
About the Technology
Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud.
About the Book
Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You’ll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases.
What's Inside
- Probabilistic sketching data structures
- Choosing the right database engine
- Designing efficient on-disk data structures and algorithms
- Algorithmic tradeoffs in massive-scale systems
- Computing percentiles with limited space resources
About the Reader
Examples in Python, R, and pseudocode.
About the Authors
Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab at Stony Brook University, New York. Emin Tahirovic earned his PhD in biostatistics from University of Pennsylvania. Illustrator Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision at RWTH Aachen University, Germany.
Quotes
An accessible and beautifully illustrated introduction to probabilistic and disk-based data structures and algorithms.
- Marcus Young, Prosper Marketplace
Upgrade your knowledge of algorithms and data structures from textbook level to real-world level.
- Rui Liu, Oracle
Excellently explains scalable data structures and algorithms. A must-read for any data engineer.
- Alex Gout, Shopify
A detailed, practical approach to dealing with distributed system and data architectures.
- Satej Kumar Sahu, Honeywell
Publisher resources
Table of contents
- title
- Copyright
- contents
- front matter
- 1 Introduction
- Part 1 Hash-based sketches
-
2 Review of hash tables and modern hashing
- 2.1 Ubiquitous hashing
- 2.2 A crash course on data structures
- 2.3 Usage scenarios in modern systems
- 2.4 O(1)—What's the big deal?
- 2.5 Collision resolution: Theory vs. practice
- 2.6 Usage scenario: How Python’s dict does it
- 2.7 MurmurHash
- 2.8 Hash tables for distributed systems: Consistent hashing
- Summary
- 3 Approximate membership: Bloom and quotient filters
- 4 Frequency estimation and count-min sketch
- 5 Cardinality estimation and HyperLogLog
- Part 2 Real-time analytics
- 6 Streaming data: Bringing everything together
- 7 Sampling from data streams
- 8 Approximate quantiles on data streams
- Part 3 Data structures for databases and external memory algorithms
- 9 Introducing the external memory model
- 10 Data structures for databases: B-trees, Bε-trees, and LSM-trees
- 11 External memory sorting
- references
- index
- inside back cover
Product information
- Title: Algorithms and Data Structures for Massive Datasets
- Author(s):
- Release date: July 2022
- Publisher(s): Manning Publications
- ISBN: 9781617298035
You might also like
book
Advanced Algorithms and Data Structures
As a software engineer, you’ll encounter countless programming challenges that initially seem confusing, difficult, or even …
book
Hands-On Data Structures and Algorithms with Python - Third Edition
Understand how implementing different data structures and algorithms intelligently can make your Python code and applications …
book
Data Structures & Algorithms in Python
LEARN HOW TO USE DATA STRUCTURES IN WRITING HIGH PERFORMANCE PYTHON PROGRAMS AND ALGORITHMS This practical …
book
Practical Linear Algebra for Data Science
If you want to work in any computational or technical field, you need to understand linear …