Book description
Visualize and build deep learning models with 3D data using PyTorch3D and other Python frameworks to conquer real-world application challenges with ease
Key Features
- Understand 3D data processing with rendering, PyTorch optimization, and heterogeneous batching
- Implement differentiable rendering concepts with practical examples
- Discover how you can ease your work with the latest 3D deep learning techniques using PyTorch3D
Book Description
With this hands-on guide to 3D deep learning, developers working with 3D computer vision will be able to put their knowledge to work and get up and running in no time.
Complete with step-by-step explanations of essential concepts and practical examples, this book lets you explore and gain a thorough understanding of state-of-the-art 3D deep learning. You'll see how to use PyTorch3D for basic 3D mesh and point cloud data processing, including loading and saving ply and obj files, projecting 3D points into camera coordination using perspective camera models or orthographic camera models, rendering point clouds and meshes to images, and much more. As you implement some of the latest 3D deep learning algorithms, such as differential rendering, Nerf, synsin, and mesh RCNN, you'll realize how coding for these deep learning models becomes easier using the PyTorch3D library.
By the end of this deep learning book, you'll be ready to implement your own 3D deep learning models confidently.
What you will learn
- Develop 3D computer vision models for interacting with the environment
- Get to grips with 3D data handling with point clouds, meshes, ply, and obj file format
- Work with 3D geometry, camera models, and coordination and convert between them
- Understand concepts of rendering, shading, and more with ease
- Implement differential rendering for many 3D deep learning models
- Advanced state-of-the-art 3D deep learning models like Nerf, synsin, mesh RCNN
Who this book is for
This book is for beginner to intermediate-level machine learning practitioners, data scientists, ML engineers, and DL engineers who are looking to become well-versed with computer vision techniques using 3D data.
Table of contents
- 3D Deep Learning with Python
- Contributors
- About the author
- About the reviewer
- Preface
- PART 1: 3D Data Processing Basics
- Chapter 1: Introducing 3D Data Processing
- Chapter 2: Introducing 3D Computer Vision and Geometry
- PART 2: 3D Deep Learning Using PyTorch3D
- Chapter 3: Fitting Deformable Mesh Models to Raw Point Clouds
- Chapter 4: Learning Object Pose Detection and Tracking by Differentiable Rendering
- Chapter 5: Understanding Differentiable Volumetric Rendering
- Chapter 6: Exploring Neural Radiance Fields (NeRF)
- PART 3: State-of-the-art 3D Deep Learning Using PyTorch3D
- Chapter 7: Exploring Controllable Neural Feature Fields
- Chapter 8: Modeling the Human Body in 3D
- Chapter 9: Performing End-to-End View Synthesis with SynSin
- Chapter 10: Mesh R-CNN
- Index
- Other Books You May Enjoy
Product information
- Title: 3D Deep Learning with Python
- Author(s):
- Release date: October 2022
- Publisher(s): Packt Publishing
- ISBN: 9781803247823
You might also like
book
Advanced Deep Learning with Python
Gain expertise in advanced deep learning domains such as neural networks, meta-learning, graph neural networks, and …
book
Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition
Updated and revised second edition of the bestselling guide to advanced deep learning with TensorFlow 2 …
book
Federated Learning with Python
Learn the essential skills for building an authentic federated learning system with Python and take your …
book
Python Machine Learning By Example - Third Edition
A comprehensive guide to get you up to speed with the latest developments of practical machine …