
This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

252

Appendix BAPPENDIX B

The Outer Limits

As you’ve seen, GNU make can do some pretty incredible things, but I haven’t seen
very much that really pushes the limits of make 3.80 with its eval construct. In this
exercise, we’ll see if we can stretch it further than usual.

Data Structures
One of the limitations of make that occasionally chaffs when writing complex
makefiles is make’s lack of data structures. In a very limited way, you can simulate a
data structure by defining variables with embedded periods (or even -> if you can
stand it):

file.path = /foo/bar
file.type = unix
file.host = oscar

If pressed, you can even “pass” this file structure to a function by using computed
variables:

define remote-file
 $(if $(filter unix,$($1.type)), \
 /net/$($1.host)/$($1.path), \
 //$($1.host)/$($1.path))
endef

Nevertheless, this seems an unsatisfying solution for several reasons:

• You cannot easily allocate a instance of this “structure.” Creating a new instance
involves selecting a new variable name and assigning each element. This also
means these pseudo-instances are not guaranteed to have the same fields (called
slots).

• The structure exists only in the user’s mind, and as a set of different make vari-
ables, rather than as a unified entity with its own name. And because the struc-
ture has no name, it is difficult to create a reference (or pointer) to a structure, so
passing them as arguments or storing one in a variable is clumsy.

,appb.573 Page 252 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Data Structures | 253

• There is no safe way to access a slot of the structure. Any typographical error in
either part of the variable name yields the wrong value (or no value) with no
warning from make.

But the remote-file function hints at a more comprehensive solution. Suppose we
implement structure instances using computed variables. Early Lisp object systems
(and even some today) used similar techniques. A structure, say file-info, can have
instances represented by a symbolic name, such as file_info_1.

Another instance might be called file_info_2. The slots of this structure can be rep-
resented by computed variables:

file_info_1_path
file_info_1_type
file_info_1_host

Since the instance has a symbolic name, it can be saved in one or more variables (as
usual, using recursive or simple variables is the choice of the programmer):

before_foo = file_info_1
another_foo = $(before_foo)

Elements of a file-info can be accessed using Lisp-like getters and setters:

path := $(call get-value,before_foo,path)
$(call set-value,before_foo,path,/usr/tmp/bar)

We can go further than this by creating a template for the file-info structure to
allow the convenient allocation of new instances:

orig_foo := $(call new,file-info)
$(call set-value,orig_foo,path,/foo/bar)

tmp_foo := $(call new,file-info)
$(call set-value,tmp_foo,path,/tmp/bar)

Now, two distinct instances of <literal>file-info</literal> exist. As a final conve-
nience, we can add the concept of default values for slots. To declare the file-info
structure, we might use:

$(call defstruct,file-info, \
 $(call defslot,path,), \
 $(call defslot,type,unix), \
 $(call defslot,host,oscar))

Here, the first argument to the defstruct function is the structure name, followed by
a list of defslot calls. Each defslot contains a single (name, default value) pair.
Example B-1 shows the implementation of defstruct and its supporting code.

Example B-1. Structure definition in make

$(next-id) - return a unique number
next_id_counter :=
define next-id
$(words $(next_id_counter))$(eval next_id_counter += 1)
endef

,appb.573 Page 253 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

254 | Appendix B: The Outer Limits

all_structs - a list of the defined structure names
all_structs :=

value_sep := XxSepxX

$(call defstruct, struct_name, $(call defslot, slot_name, value), ...)
define defstruct
 $(eval all_structs += $1) \
 $(eval $1_def_slotnames :=) \
 $(foreach v, $2 $3 $4 $5 $6 $7 $8 $9 $(10) $(11), \
 $(if $($v_name), \
 $(eval $1_def_slotnames += $($v_name)) \
 $(eval $1_def_$($v_name)_default := $($v_value))))
endef

$(call defslot,slot_name,slot_value)
define defslot
 $(eval tmp_id := $(next_id))
 $(eval $1_$(tmp_id)_name := $1)
 $(eval $1_$(tmp_id)_value := $2)
 $1_$(tmp_id)
endef

all_instances - a list of all the instances of any structure
all_instances :=

$(call new, struct_name)
define new
$(strip \
 $(if $(filter $1,$(all_structs)),, \
 $(error new on unknown struct '$(strip $1)')) \
 $(eval instance := $1@$(next-id)) \
 $(eval all_instances += $(instance)) \
 $(foreach v, $($(strip $1)_def_slotnames), \
 $(eval $(instance)_$v := $($(strip $1)_def_$v_default))) \
 $(instance))
endef

$(call delete, variable)
define delete
$(strip \
 $(if $(filter $($(strip $1)),$(all_instances)),, \
 $(error Invalid instance '$($(strip $1))')) \
 $(eval all_instances := $(filter-out $($(strip $1)),$(all_instances))) \
 $(foreach v, $($(strip $1)_def_slotnames), \
 $(eval $(instance)_$v :=)))
endef

$(call struct-name, instance_id)
define struct-name
$(firstword $(subst @, ,$($(strip $1))))
endef

Example B-1. Structure definition in make (continued)

,appb.573 Page 254 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Data Structures | 255

$(call check-params, instance_id, slot_name)
define check-params
 $(if $(filter $($(strip $1)),$(all_instances)),, \
 $(error Invalid instance '$(strip $1)')) \
 $(if $(filter $2,$($(call struct-name,$1)_def_slotnames)),, \
 $(error Instance '$($(strip $1))' does not have slot '$(strip $2)'))
endef

$(call get-value, instance_id, slot_name)
define get-value
$(strip \
 $(call check-params,$1,$2) \
 $($($(strip $1))_$(strip $2)))
endef

$(call set-value, instance_id, slot_name, value)
define set-value
 $(call check-params,$1,$2) \
 $(eval $($(strip $1))_$(strip $2) := $3)
endef

$(call dump-struct, struct_name)
define dump-struct
{ $(strip $1)_def_slotnames "$($(strip $1)_def_slotnames)" \
 $(foreach s, \
 $($(strip $1)_def_slotnames),$(strip \
 $(strip $1)_def_$s_default "$($(strip $1)_def_$s_default)")) }
endef

$(call print-struct, struct_name)
define print-struct
{ $(foreach s, \
 $($(strip $1)_def_slotnames),$(strip \
 { "$s" "$($(strip $1)_def_$s_default)" })) }
endef

$(call dump-instance, instance_id)
define dump-instance
{ $(eval tmp_name := $(call struct-name,$1)) \
 $(foreach s, \
 $($(tmp_name)_def_slotnames),$(strip \
 { $($(strip $1))_$s "$($($(strip $1))_$s)" })) }
endef

$(call print-instance, instance_id)
define print-instance
{ $(foreach s, \
 $($(call struct-name,$1)_def_slotnames),"$(strip \
 $(call get-value,$1,$s))") }
endef

Example B-1. Structure definition in make (continued)

,appb.573 Page 255 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

256 | Appendix B: The Outer Limits

Examining this code one clause at a time, you can see that it starts by defining the
function next-id. This is a simple counter:

$(next-id) - return a unique number
next_id_counter :=
define next-id
$(words $(next_id_counter))$(eval next_id_counter += 1)
endef

It is often said that you cannot perform arithmetic in make, because the language is
too limited. In general, this is true, but for limited cases like this you can often com-
pute what you need. This function uses eval to redefine the value of a simple vari-
able. The function contains two expressions: the first expression returns the number
of words in next_id_counter; the second expression appends another word to the
variable. It isn’t very efficient, but for numbers in the small thousands it is fine.

The next section defines the defstruct function itself and creates the supporting data
structures.

all_structs - a list of the defined structure names
all_structs :=

value_sep := XxSepxX

$(call defstruct, struct_name, $(call defslot, slot_name, value), ...)
define defstruct
 $(eval all_structs += $1) \
 $(eval $1_def_slotnames :=) \
 $(foreach v, $2 $3 $4 $5 $6 $7 $8 $9 $(10) $(11), \
 $(if $($v_name), \
 $(eval $1_def_slotnames += $($v_name)) \
 $(eval $1_def_$($v_name)_default := $($v_value))))
endef

$(call defslot,slot_name,slot_value)
define defslot
 $(eval tmp_id := $(next_id))
 $(eval $1_$(tmp_id)_name := $1)
 $(eval $1_$(tmp_id)_value := $2)
 $1_$(tmp_id)
endef

The variable all_structs is a list of all known structures defined with defstruct.
This list allows the new function to perform type checking on the structures it allo-
cates. For each structure, S, the defstruct function defines a set of variables:

S_def_slotnames
S_def_slotn_default

The first variable defines the set of slots for a structure. The other variables define the
default value for each slot. The first two lines of the defstruct function append to
all_structs and initialize the slot names list, respectively. The remainder of the func-
tion iterates through the slots, building the slot list and saving the default value.

,appb.573 Page 256 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Data Structures | 257

Each slot definition is handled by defslot. The function allocates an id, saves the slot
name and value in two variables, and returns the prefix. Returning the prefix allows
the argument list of defstruct to be a simple list of symbols, each of which provides
access to a slot definition. If more attributes are added to slots later, incorporating
them into defslot is straightforward. This technique also allows default values to
have a wider range of values (including spaces) than simpler, alternative implementa-
tions.

The foreach loop in defstruct determines the maximum number of allowable slots.
This version allows for 10 slots. The body of the foreach processes each argument by
appending the slot name to S_def_slotnames and assigning the default value to a vari-
able. For example, our file-info structure would define:

file-info_def_slotnames := path type host
file-info_def_path_default :=
file-info_def_type_default := unix
file-info_def_host_default := oscar

This completes the definition of a structure.

Now that we can define structures, we need to be able to instantiate one. The new
function performs this operation:

$(call new, struct_name)
define new
$(strip \
 $(if $(filter $1,$(all_structs)),, \
 $(error new on unknown struct '$(strip $1)')) \
 $(eval instance := $1@$(next-id)) \
 $(eval all_instances += $(instance)) \
 $(foreach v, $($(strip $1)_def_slotnames), \
 $(eval $(instance)_$v := $($(strip $1)_def_$v_default))) \
 $(instance))
endef

The first if in the function checks that the name refers to a known structure. If the
structure isn’t found in all_structs, an error is signaled. Next, we construct a
unique id for the new instance by concatenating the structure name with a unique
integer suffix. We use an at sign to separate the structure name from the suffix so we
can easily separate the two later. The new function then records the new instance
name for type checking by accessors later. Then the slots of the structure are initial-
ized with their default values. The initialization code is interesting:

$(foreach v, $($(strip $1)_def_slotnames), \
 $(eval $(instance)_$v := $($(strip $1)_def_$v_default)))

The foreach loop iterates over the slot names of the structure. Using strip around on
the structure name allows the user to add spaces after commas in the call to new. Recall
that each slot is represented by concatenating the instance name and the slot name (for
instance, file_info@1_path). The righthand side is the default value computed from the
structure name and slot name. Finally, the instance name is returned by the function.

,appb.573 Page 257 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

258 | Appendix B: The Outer Limits

Note that I call these constructs functions, but they are actually macros. That is, the
symbol new is recursively expanded to yield a new piece of text that is inserted into
the makefile for reparsing. The reason the defstruct macro does what we want is
because all the work is eventually embedded within eval calls, which collapse to
nothing. Similarly, the new macro performs its significant work within eval calls. It
can reasonably be termed a function, because the expansion of the macro conceptu-
ally yields a single value, the symbol representing the new instance.

Next, we need to be able to get and set values within our structures. To do this, we
define two new functions:

$(call get-value, instance_id, slot_name)
define get-value
$(strip \
 $(call check-params,$1,$2) \
 $($($(strip $1))_$(strip $2)))
endef

$(call set-value, instance_id, slot_name, value)
define set-value
 $(call check-params,$1,$2) \
 $(eval $($(strip $1))_$(strip $2) := $3)
endef

To get the value of a slot, we simply need to compute the slot variable name from the
instance id and the slot name. We can improve safety by first checking that the
instance and slot name are valid strings with the check-params function. To allow
more aesthetic formating and to ensure that extraneous spaces do not corrupt the
slot value, we wrap most of these parameters in strip calls.

The set function also checks parameters before setting the value. Again, we strip the
two function arguments to allow users the freedom to add spaces in the argument
list. Note that we do not strip the slot value, because the user might actually need the
spaces.

$(call check-params, instance_id, slot_name)
define check-params
 $(if $(filter $($(strip $1)),$(all_instances)),, \
 $(error Invalid instance '$(strip $1)')) \
 $(if $(filter $2,$($(call struct-name,$1)_def_slotnames)),, \
 $(error Instance '$($(strip $1))' does not have slot '$(strip $2)'))
endef

$(call struct-name, instance_id)
define struct-name
$(firstword $(subst @, ,$($(strip $1))))
endef

The check-params function simply checks that the instance id passed to the setter and
getter functions is contained within the known instances list. Likewise, it checks that
the slot name is contained within the list of slots belonging to this structure. The

,appb.573 Page 258 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Data Structures | 259

structure name is computed from the instance name by splitting the symbol on the @
and taking the first word. This means that structure names cannot contain an at sign.

To round out the implementation, we can add a couple of print and debugging func-
tions. The following print function displays a simple user-readable representation of a
structure definition and a structure instance, while the dump function displays the
implementation details of the two constructs. See Example B-1 for the implementations.

Here’s an example defining and using our file-info structure:

include defstruct.mk

$(call defstruct, file-info, \
 $(call defslot, path,), \
 $(call defslot, type,unix), \
 $(call defslot, host,oscar))

before := $(call new, file-info)
$(call set-value, before, path,/etc/password)
$(call set-value, before, host,wasatch)

after := $(call new,file-info)
$(call set-value, after, path,/etc/shadow)
$(call set-value, after, host,wasatch)

demo:
 # before = $(before)
 # before.path = $(call get-value, before, path)
 # before.type = $(call get-value, before, type)
 # before.host = $(call get-value, before, host)
 # print before = $(call print-instance, before)
 # dump before = $(call dump-instance, before)
 #
 # all_instances = $(all_instances)
 # all_structs = $(all_structs)
 # print file-info = $(call print-struct, file-info)
 # dump file-info = $(call dump-struct, file-info)

and the output:

$ make
before = file-info@0
before.path = /etc/password
before.type = unix
before.host = wasatch
print before = { "/etc/password" "unix" "wasatch" }
dump before = { { file-info@0_path "/etc/password" } { file-info@0_type "unix" }
{ file-info@0_host "wasatch" } }
#
all_instances = file-info@0 file-info@1
all_structs = file-info
print file-info = { { "path" "" } { "type" "unix" } { "host" "oscar" } }
dump file-info = { file-info_def_slotnames " path type host" file-info_def_path_
default "" file-info_def_type_default "unix" file-info_def_host_default "oscar" }

,appb.573 Page 259 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

260 | Appendix B: The Outer Limits

Also note how illegal structure uses are trapped:

$ cat badstruct.mk
include defstruct.mk
$(call new, no-such-structure)
$ make -f badstruct.mk
badstruct.mk:2: *** new on unknown struct 'no-such-structure'. Stop.

$ cat badslot.mk
include defstruct.mk
$(call defstruct, foo, defslot(size, 0))
bar := $(call new, foo)
$(call set-value, bar, siz, 10)
$ make -f badslot.mk
badslot.mk:4: *** Instance 'foo@0' does not have slot 'siz'. Stop.

Of course, there are lots of improvements that can be made to the code, but the basic
ideas are sound. Here is a list of possible enhancements:

• Add a validation check to the slot assignment. This could be done with a hook
function that must yield empty after the assignment has been performed. The
hook could be used like this:

$(call set-value, instance_id, slot_name, value)
define set-value
 $(call check-params,$1,$2) \
 $(if $(call $(strip $1)_$(strip $2)_hook, value), \
 $(error set-value hook, $(strip $1)_$(strip $2)_hook, failed)) \
 $(eval $($(strip $1))_$(strip $2) := $3)
endef

• Support for inheritance. A defstruct could accept another defstruct name as a
superclass, duplicating all the superclass’s members in the subclass.

• Better support for structure references. With the current implementation, a slot
can hold the ID of another structure, but accessing is awkward. A new version of
the get-value function could be written to check for references (by looking for
defstruct@number), and perform automatic dereferencing.

Arithmetic
In the previous section, I noted that it is not possible to perform arithmetic in make
using only its native features. I then showed how you could implement a simple
counter by appending words to a list and returning the length of the list. Soon after I
discovered the increment trick, Michael Mounteney posted a cool trick for perform-
ing a limited form of addition on integers in make.

His trick manipulates the number line to compute the sum of two integers of size one
or greater. To see how this works, imagine the number line:

2 3 4 5 6 7 8 9 10 11 12 13 14 15

,appb.573 Page 260 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Arithmetic | 261

Now, notice that (if we could get the subscripts right), we could add, say 4 plus 5, by
first taking a subset of the line from the fourth element to the end then selecting the
fifth element of the subset. We can do this with native make functions:

number_line = 2 3 4 5 6 7 8 9 10 11 12 13 14 15
plus = $(word $2, $(wordlist $1, 15, $(number_line)))
four+five = $(call plus, 4, 5)

Very clever, Michael! Notice that the number line starts with 2 rather than 0 or 1.
You can see that this is necessary if you run the plus function with 1 and 1. Both sub-
scripts will yield the first element and the answer must be 2, therefore, the first ele-
ment of the list must be 2. The reason for this is that, for the word and wordlist
functions, the first element of the list has subscript 1 rather than 0 (but I haven’t
bothered to prove it).

Now, given a number line, we can perform addition, but how do we create a num-
ber line in make without typing it in by hand or using a shell program? We can create
all numbers between 00 and 99 by combining all possible values in the tens place
with all possible values in the ones place. For example:

make -f - <<< '$(warning $(foreach i, 0 1 2, $(addprefix $i, 0 1 2)))'
/c/TEMP/Gm002568:1: 00 01 02 10 11 12 20 21 22

By including all digits 0 through 9, we would produce all numbers from 00 to 99. By
combining the foreach again with a hundreds column, we would get the numbers
from 000 to 999, etc. All that is left is to strip the leading zeros where necessary.

Here is a modified form of Mr. Mounteney’s code to generate a number line and
define the plus and gt operations:

combine - concatentate one sequence of numbers with another
combine = $(foreach i, $1, $(addprefix $i, $2))

stripzero - Remove one leading zero from each word
stripzero = $(patsubst 0%,%,$1)

generate - Produce all permutations of three elements from the word list
generate = $(call stripzero, \
 $(call stripzero, \
 $(call combine, $1, \
 $(call combine, $1, $1))))

number_line - Create a number line from 0 to 999
number_line := $(call generate,0 1 2 3 4 5 6 7 8 9)
length := $(word $(words $(number_line)), $(number_line))

plus - Use the number line to add two integers
plus = $(word $2, \
 $(wordlist $1, $(length), \
 $(wordlist 3, $(length), $(number_line))))

gt - Use the number line to determine if $1 is greater than $2
gt = $(filter $1, \

,appb.573 Page 261 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

262 | Appendix B: The Outer Limits

 $(wordlist 3, $(length), \
 $(wordlist $2, $(length), $(number_line))))

all:
 @echo $(call plus,4,7)
 @echo $(if $(call gt,4,7),is,is not)
 @echo $(if $(call gt,7,4),is,is not)
 @echo $(if $(call gt,7,7),is,is not)

When run, the makefile yields:

$ make
11
is not
is
is not

We can extend this code to include subtraction by noting that subscripting a
reversed list is just like counting backwards. For example, to compute 7 minus 4,
first create the number line subset 0 to 6, reverse it, then select the fourth element:

number_line := 0 1 2 3 4 5 6 7 8 9...
1through6 := 0 1 2 3 4 5 6
reverse_it := 6 5 4 3 2 1 0
fourth_item := 3

Here is the algorithm in make syntax:

backwards - a reverse number line
backwards := $(call generate, 9 8 7 6 5 4 3 2 1 0)

reverse - reverse a list of words
reverse = $(strip \
 $(foreach f, \
 $(wordlist 1, $(length), $(backwards)), \
 $(word $f, $1)))

minus - compute $1 minus $2
minus = $(word $2, \
 $(call reverse, \
 $(wordlist 1, $1, $(number_line))))

minus:
 # $(call minus, 7, 4)

Multiplication and division are left as an exercise for the reader.

,appb.573 Page 262 Friday, March 25, 2005 1:47 PM

